1) a) (2a^2-3a+1)-(7a^2-5a)=
2a^2-3a+1-7a^2+5a=
-5a^2+2a+1=
-6a^2+(a+1)^2
b) 3x(4x^2-x)=
12x^3-3x^2=
3x^2(4x-1)
2) a) 2xy-xy^2=xy(2-y)
b) 8b^4+2b^3=2b^3(4b+1)
3) 7-4(3x-1)=5(1-2x)
7-12x+4=5-10x
-12x+10x=5-7-4
-2x=-6
x=3
4) Дано:
6Б=х учеников
6А=х-2 учеников
6В=х+3 ученика
Всего в 3-х классах = 91 ученик
Найти, сколько учеников в каждом классе
х+х-2+х+3=91
3х+1=91
3х=90
х=30 ученика
х-2=28 учеников
х+3=33 ученика
ответ: 6А - 28 учеников: 6Б - 30 уч еников; 6В - 33 ученика
5) (x-1)/5=(5-x)/2+(3x)/4
4(х-1)/20=10(5-х)/20+5(3х)/20
4х-4=50-10х+15х
4х+10х-15х=50+4
-х=54
х=-54
6) 3x(x+y+c)-3y(x-y-c)-3c(x+y-c)=
3x^2+3xy+3xc-3xy+3y^2+3yc-3xc-3yc+3c^2=
3x^2+3y^2+3c^2=
3(x^2+y^2+c^2)
1)arcsin 0 =0
2)arccos 1= 0 ;
3)arcsin√2/2 =π/4 ;
4)arccos 3 не существует угол косинус которой =3 ;
5)arcsin (-1) = -π/2 ;
6)arccos(-√3/2) = π -π/6 = 5π/6 ;
7)arctg 0 = 0 ;
8)arctg 1 =π/4 ;
9)arctg(-√3) = - π/3 ;
10)arcctg(-√3/3) = π -π/3= 2π/3 ;
11)arcsin(-1/2)+arccos 1 = -π/6 +0 = -π/6 ;
12) (arcsin -1)/2+ arccos 1 = -π/4+0= -π/4;
13)cos ( arccos 1) =1;
14)sin(arcsin√2/2) =√2/2 ;
15)arcsin (sin π/4) =arcsin(√2/2) =π/4 ;
16)arccos ( cos(-π/4))=arccos ( cos(π/4))=arccos (√2/2))=π/4 ;
17)cos (arcsin(-1/3))=cos(arccos(√8/3)= √8/3 =2√2/3 ;
18)tg(arccos(-1/4)) =tq(arctq(-√15) = - √15; 1+tq²α= 1/cos²α
19)sin(arcctg(-2)) =sin(arcsin(1/√5)=1/√5 ;
20) arcsin(cos π/9) =arcsin(sin(π/2 - π/9))=arcsin(sin7π/18) =7π/18 .
Подробнее - на -
Объяснение:
При умножении степени с одиннаковыми основами суммуются; а при делении вычитаются.
а^10×а^13 = а^(10+13) = а^23
а^16:а^14 = а^(16-14) = а²