Постройте график функции y= x^2 - 4x + 4 найти область значения функции
y= x² - 4x + 4 ;
y = (x -2)²
График этой функции парабола , получается из графики функции у =x² перемещением по положительному направлению оси абсцисс _Ox
( направо) на две единицы . Вершина параболы оказывается в точке
на оси абсцисс с координатой x =2 * * * точка B(0 ; 2)_точка миним. * * *
ветви направленные вверх (по "+ 0у" ) .
График ось ординат пересекает в точке (0 ; 4) * * *x =0 ⇒y =(0 -2)² =4.* * *
y=(x -2)² ≥0
Минимальное значение функции равно нулю : Minу =0 , если x =2 .
Максимальное значение не имеетю
Область значения функции : E(y) = [ 0 ; +∞)
y³ - 2y² - y + 2 = 0
Разложим на множители и решим:
( y - 2)(y - 1)(y + 1) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
y - 2 = 0
y = 2
y - 1 = 0
y = 1
y + 1 = 0
y = -1
ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0
x⁴ - 14x² + 49 - 4x² - 17 = 0
x⁴ - 18x² + 32 = 0
Разложим на множители и решим:
(x² - 16)(x² - 2) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² - 16 = 0
x² = 16
x = 4
x = - 4
x² - 2 = 0
x² = 2
x = +/- √2
ответ: x = 4, x = - 4, x = √2, x = - √2.