Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.
\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.
Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.
\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.
Объяснение:
удачи получить хорошую отметку
{3-3x^2≥0
{3+x>0
+ - +
x^2-1≥0; x=-1 ili x=1 (-1)1>x
x∈(-∞; -1] ∪[1;+∞) - + -
2) 3*(1-x^2)≥0; x=-1 ili x=1 (-1)1>x
x⊂[-1;1]
3) 3+x>0; x>-3
общее решение: x=-1 i x=1
если х=-1, то √1-1 -8^√(3-3) *log(2) (3-1)=-1;
0-1*1=-1 x=-1-корень уравнения!
х=1 0-1*log(2) (3+1)=1; -2=1 неверно
ответ. -1