Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки
по оси
, ведь для любой точки числовой окружности справедливо, что
, т.е. точка
имеет координаты
.
Если провести прямую, параллельную оси через точку
, то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке
и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это
и
.
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она
.
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно
.
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол
, что
. Главное здесь то, что
может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь
.
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а
- угол.
Пусть прямая пересекается с окружностью в точках
в первой четверти и
во второй четверти, а точку
на оси
мы обзовём
. Рассмотрим треугольники
и
, в них:
Треугольники и
равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол
и угол
.
Но углы мы отсчитываем от точки , обзовём её
. Тогда угол
. А это угол
первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный
. Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами
надо добавить
, где
- целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если
- чётное, то формула трансформируется в
, если нечётное, то в
, ну а
. Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.
Он обязательно будет лежать в плоскости, перпендикулярной данной, уравнение которой нам нужно составить.
Отложим этот вектор, например, от точки A (-3; 2; 1), т. е. проведём вектор АС, который лежит в искомой плоскости.
Получим точку С (-1; 5; -3), которая тоже лежит в искомой плоскости.
Зная координаты трёх точек A (-3; 2; 1), В (4; -1; 2) и С (-1; 5; -3), лежащих в одной плоскости, найдём уравнение этой плоскости.
Для этого составляем определитель:
| x-(-3) 4-(-3) -1-(-3) |
| y-2 -1-2 5-2 | = 0
| z-1 2-1 -3-1 |
| x+3 7 2 |
| y-2 -3 3 | = 0
| z-1 1 -4 |
Раскрываем определитель по первому столбцу:
(x+3) × |-3 3| - (y-2) × |7 2| + (z-1) × |7 2| = 0
|1 -4| |1 -4| |-3 3|
(x+3) × (-3×(-4)-1×3) - (y-2) × (7×(-4)-1×2) + (z-1) × (7×3-(-3)×2) = 0
(x+3) × (12-3) - (y-2) × (-28-2) + (z-1) × (21-(-6) = 0
(x+3) × 9 - (y-2) × (-30) + (z-1) × 27 = 0
9(x+3) +30(y-2) + 27(z-1) = 0
3(x+3) +10(y-2) + 9(z-1) = 0
3x + 9 + 10y - 20 + 9z - 9 = 0
3x + 10y + 9z - 20 = 0 -- искомое уравнение плоскости