М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GVA200208
GVA200208
16.03.2023 05:40 •  Алгебра

Nнаименьшее число сумма цифр которого равна 2020. а)найдите число n б)найдите сумму цифра 2n? ​

👇
Ответ:
DEN23567893
DEN23567893
16.03.2023

Объяснение:

а) Чтобы число было наименьшим, в нем должно быть как можно меньше цифр. Поэтому строим число из девяток.

2020 = 224*9 + 4

Это число n = 4999...999 (цифра 9 повторяется 224 раза).

б) 2n = 2*4999...999 = 999...9998 (цифра 9 повторяется 224 раза).

4,5(72 оценок)
Открыть все ответы
Ответ:

Відповідь:

Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.

Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.

Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,

8 + 9 + 2,  мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:

8 + 2 + 9 = 10 + 9 = 19.

4,6(61 оценок)
Ответ:
Assssssa
Assssssa
16.03.2023
3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x
tg²x+6tgx+8=0
tgx=a
a²+6a+8=0
a1+a2=-6 U a1*a2=8
a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z
a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z

5. 2cos^2 x – 11sin 2x = 12
2cos²x-22sinxcosx-12sin²x-12cos²x=0/cos²x
12tg²x+22tgx+10=0
6tg²x+11tgx+5=0
tgx=a
6a²+11a+5=0
D=121-120=1
a1=(-11-1)/12=-1⇒tgx=-1⇒x=-π/4+πn,n∈z
a2=(-11+1)/12=-5/6⇒tgx=-5/6⇒x=-arctg5/6+πk,k∈z

6. 2sin^2 x – 3sin 2x – 4cos 2x = 4
2sin²x-6sinxcosx-4cos²x+4sin²x-4sin²x-4cos²x=0/cos²x
2tg²x-6tgx-8=0
tg²x-3tgx-4=0
tgx=a
a²-3a-4=0
a1+a2=3 U a1*a2=-4
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=4⇒tgx=4⇒x=arctg4+πn,n∈z
4,4(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ