М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
маняня4
маняня4
31.12.2020 03:06 •  Алгебра

A^3+b^3+c^3=9 доказать что abc делиться на 3

👇
Ответ:
lezifequliyeva
lezifequliyeva
31.12.2020
Давайте решим задачу шаг за шагом.

Задача: Доказать, что если A^3 + B^3 + C^3 = 9, то abc делится на 3.

Шаг 1: Начнем с раскрытия кубов:
A^3 + B^3 + C^3 = (A + B + C)(A^2 - AB + B^2) + C^3 = 9

Шаг 2: Обратите внимание, что у нас есть сумма кубов: A^3 + B^3 + C^3 и сумма (A + B + C), которая умножается на квадратное выражение (A^2 - AB + B^2) и добавляется к C^3. Мы увидим, как это поможет нам доказать нашу конечную цель.

Шаг 3: Отдельно рассмотрим член C^3. Имеем:
A^3 + B^3 + C^3 = (A + B + C)(A^2 - AB + B^2) + C^3 = 9

Шаг 4: Поскольку сумма кубов равна 9, то их сумма делится на 3 без остатка. Мы также знаем, что C^3 делится на 3 без остатка (так как он является одним из слагаемых суммы). Таким образом, итоговая сумма (A + B + C)(A^2 - AB + B^2) должна делиться на 3 без остатка.

Шаг 5: Рассмотрим выражение A + B + C. Если оно делится на 3 без остатка, то мы практически вышли к конечному доказательству нашей задачи. Однако, нам нужно еще показать, что (A^2 - AB + B^2) делится на 3.

Шаг 6: Рассмотрим выражение A^2 - AB + B^2. Поскольку мы предполагаем, что A + B + C делится на 3 без остатка, мы можем заменить его на -C (изначальное уравнение). Тогда:
(A + B + C)(A^2 - AB + B^2) = (-C)(A^2 - AB + B^2)

Шаг 7: Разложим (-C)(A^2 - AB + B^2):
(-C)(A^2 - AB + B^2) = -CA^2 + CAB - CB^2

Шаг 8: Заметим, что выражение -CA^2 + CАВ - CB^2 является одним из слагаемых исходной суммы A^3 + B^3 + C^3. Это означает, что оно делится на 3 без остатка. Следовательно, и (A^2 - AB + B^2) делится на 3 без остатка.

Шаг 9: Таким образом, мы доказали, что и A + B + C, и (A^2 - AB + B^2) делятся на 3 без остатка. А их произведение (A + B + C)(A^2 - AB + B^2) также будет делиться на 3 без остатка.

Шаг 10: Возвращаясь к исходному выражению, мы можем сказать, что abc делится на 3 без остатка, так как (A + B + C)(A^2 - AB + B^2) делится на 3 без остатка, а abc является произведением трех переменных, каждая из которых делится на 3 без остатка.

Таким образом, мы доказали, что если A^3 + B^3 + C^3 = 9, то abc делится на 3 без остатка.
4,5(4 оценок)
Проверить ответ в нейросети
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ