Для построения графика надо составить таблицу значений функции при заданных значениях аргумента: х -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 у 26 15 6 -1 -6 -9 -10 -9 -6 -1 6 15 26. По графику ответить на заданные вопросы. Проверку правильности можно выполнить аналитически:
График функции х²+4х-2 - это парабола ветвями вверх (коэффициент при х² - положителен). 1.Значение у при х=1,5. Надо в уравнение подставить вместо х его значение: у = 1,5² + 4*1,5 - 2 = 2,25 + 6 - 2 = 6,25.
2.Значение х при у=4. Надо решить квадратное уравнение: 4 = х² + 4х - 2 х² + 4х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=4^2-4*1*(-6)=16-4*(-6)=16-(-4*6)=16-(-24)=16+24=40; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√40-4)/(2*1)=√40/2-4/2=√40/2-2 ≈ 1.162278; x_2=(-√40-4)/(2*1)=-√40/2-4/2=-√40/2-2 ≈ -5.162278.
3.Значение х при котором у>0. На основании ответа на вопрос № 2 (где у = 0) больше 0 значения У будут при Х < -5.162278 и X > 1.162278.
4.Промежуток в котором функция возрастает определяется вершиной параболы: Хо = -в / 2а = -4 / 2 = -2 Уо = 1 - 8 - 6 = -13. До значения Х = -2 функция убывает, при Х > -2 функция возрастает.
а - первое число арифметической прогрессии
b - второе число арифметической прогрессии
c - третье число арифметической прогрессии
а+b+с = 9 -сумма членов ариф. прогрессии
Сумму членов ариф. прогрессии можно вычислить и по формуле
Sₓ = ((а+с)/2) * х
где х = 3 - количество членов ариф. прогрессии
S₃ = ((а+с)/2) *3 = 9
((а+с)/2) *3 = 9
((а+с)/2) = 9/3 =3
(а+с) = 3*2
а+с = 6
определим b - второй член ариф. прогресс.
а+b+с = 9
b = 9-а-с = 9-6 = 3 -второй член ариф. прогресс.
по условию задачи
(а + 1) - первое число геометрической прогрессии
(b + 1) - второе число геометрической прогрессии
(с + 3) - третье число геометрической прогрессии
(а + 1) * (b + 1) * (с + 3) геометр. прогрессия
где b + 1 = 3+1 = 4 второй член геометр. прогрессии
второй член. геом. прогрессии вычисляется по формуле b₂=b₁*q ( где q - знаменатель геом. прогрессии)
следовательно:
b = (а+1) * q
4 = (а+1) * q
q = 4/(а+1)
выразим третий член геом. прогрессии (с + 3) по формуле b₃=b₂*q
(с + 3) = 4*q (подставим в формулу значение q = 4/(а+1))
с+3 = 4*4/(а+1)
с+3 = 16/(а+1)
с = (16/(а+1)) - 3общий знаменатель (а+1)
с = (16-3а-3) / (а+1)
с=(13-3а) / (а+1)
подставим значение с в формулу а+с = 6 (смотри в начале решения)
а + ((13-3а) / (а+1)) = 6 ---левую часть под общий знаменатель (а+1)
(а*(а+1) +13-3а) / (а+1) = 6
а² + а + 13 - 3а = 6*(а+1)
а²-2а+13 = 6а +6
а² - 8а + 7 = 0отсюда находим а = 1 - первый член ариф. прогр.
проверка1²- 8*1 + 7 = 0
т. к. а+с = 6, значит с = 6-а=6-1 = 5 - третий член ариф. прогрессии
итого: а = 1 - первый член ариф. прогр.
b=3 - второй член ариф. прогресс.
с = 5 - третий член ариф. прогрессии
проверка: а+b+с = 1+3+5= 9 -верно
(а + 1)=1+1 = 2 - первое число геометрической прогрессии
(b + 1) =3+1 = 4 - второе число геометрической прогрессии
(с + 3)=5+3 = 8 - третье число геометрической прогрессии
q = 4/(а+1) = 4/(1+1)= 2 -знаменатель геом. прогрессии
проверка: 2*2=44*2=8верно