ответ: для четной функции у(х) =у(-х). В данном случае у(1)=1-2-5+6=7-7=0, у(-1)=-1-2+5+6=11-3=8. То есть функция не является четной.
Объяснение:
ищем определитель через разложение по 1-му столбцу:
2 1 -1
Δ₁₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₁₁ = 2*((-1)*2-1*3)-2*(1*2-1*(-1))+0*(1*3-(-1)*(-1)) = -16
минор для (2,1):
-1 0 3
Δ₂₁= 2 -1 3
0 1 2
определитель для этого минора.
∆₂₁ = (-1)*((-1)*2-1*3)-2*(0*2-1*3)+0*(0*3-(-1)*3) = 11
минор для (3,1):
-1 0 3
∆₃₁ = 2 1 -1
0 1 2
определитель для этого минора.
∆3,1 = (-1)*(1*2-1*(-1))-2*(0*2-1*3)+0*(0*(-1)-1*3) = 3
минор для (4,1):
-1 0 3
Δ₄₁ = 2 1 -1
2 -1 3
определитель для этого минора.
∆₄₁ = (-1)*(1*3-(-1)*(-1))-2*(0*3-(-1)*3)+2*(0*(-1)-1*3) = -14
определитель матрицы
∆ = (-1)⁽¹⁺¹⁾ *1*(-16) + (-1)⁽²⁺¹⁾ *3*11 + (-1)⁽³⁺¹⁾ *1*3 + (-1)⁽⁴⁺¹⁾ *4*(-14) = 10
Задача 1. На рисунку зображені крива байдужості та бюджетна лінія Припустимо, що ціна товару Х дорівнює 8 грн.
Визначте:
а) ціну товару У;
б) рівняння даної бюджетної лінії;
в) граничну норму заміщення товару У на товар Х у стані рівноваги споживача.
Рішення:
Рівняння бюджетної лінії має вид:
I = PXQX + PYQY,
якщо ми витрачаємо усі гроші на покупку тільки товару X або Y, то рівняння приймає такий вид:
I = PXQX або I = PYQY,
Таким чином, виникає можливість визначити величину доходу споживача, а також ціну товару У:
І = PXQX = 835 = 280 (грн.)
PY = І / QY = 280 / 30 = 9,3 (грн.)
Далі слід записати рівняння даної бюджетної лінії, використовуючи вже визначені ціни товарів Х та У:
І = 8QX + 9,3QY
Крім того, визначаємо граничну норму заміщення товару У на товар Х в стані рівноваги споживача:
MRSXY = PX / PY
MRSXY = 8 / 9,3 = 0,86.
x1 = - 2
x2 = 1
x3 = 3
Расписывать долго