n=1: 1 = (1(1+1)/2)^2 = (1*2/2)^2=1^2=1 => для n=1 - верно
n=k: 1^3+2^3+...+k^3=(k(k+1)/2)^2 - для k
n=k+1: 1^3+2^3+...+(k+1)^3 = ((k+1)(k+2)/2)^2 - для k+1
Вернемся к n=k, прибавим к нему соответствующее значение (k+1), то есть (k+1)^3
1^3+2^3+...+k^3+(k+1)^3 = (k(k+1)/2)^2 + (k+1)^3 = k^2*(k+1)^2/4 + (k+1)^3 = (k+1)^2 * (k^2/4 + (k+1)) = (k+1)^2/4 (k ^2+ 4k + 4) = (k+1)^2/4*(k+2)^2 = ((k+1)(k+2)/2)^2 - теперь сравните полученный результат с n=k+1.
Так как они равны, то по методу математической индукции исходное выражение верно при любом значении n, что и требовалось доказать
3х^2-5х-12<0
Приравняем к нулю, получим квадратное уравнение, решим его:
3х^2-5х-12=0
D = 25 + 144 = 169 = 13^2 (в квадрате)
x1 = (5 + 13) / 6 = 3
x2 = (5 - 13) / 6 = -1 1/3
Графиком этого уравнения является парабола, её "ветви" направлены вверх, т. к. коэффицент перед x^2 положительный. Схематично покажем значение y на графике.
+ - +
-1 1/3 3
Нам нужно, чтобы у был меньше нуля, поэтому ответ : ( - 1 1/3 ; 3) (потому что неравенство строгое).
:)