1.Пусть производительность 1 - х, 2 - (100 - х) , причем по условию х > (100 - x). 2.Найдем работу, выполненную каждым экскаватором, 1м - 0,2*2000 = 400; 2 м - 0,3*2000 = 600 3. Время на выполнение этой работы: 400/х + 600/(100 - х) = t + 25 (t - время выполнения второй половины работы) 4.2000 - (400 + 600) = 1000 - вторая половина работы, вместе за час - 100, время t = 1000/100 = 10 час 5.Вернемся к пункту (3) : 400/х + 600/(100 - х) = 10 + 25, х = 80 и х = 100/7 (не уд. см. пункт (1)) 6.Производительность 1 - 80куб. м, 2 - 20 куб. м
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
-4x²y(b-a)²+6xy²(b-a)=-2xy(b-a)*(2x(b-a)-3y)=-2xy(b-a)(2xb-2xa-3y)