(x - 7)*(3x + 1) = (x + 5)^2, 3x^2 - 20x - 7 = x^2 + 10x + 25, 2x^2 - 30x - 32 = 0, x^2 - 15x - 16 = 0, x^2 + x - 16x - 16 = 0, x(x + 1) - 16(x + 1) = 0, (x + 1)*(x - 16) = 0, x + 1 = 0 или x - 16 = 0, x = -1 или x = 16. Искомые числа: 1) если х = -1, то - это -1 - 7 = -8, -1 + 5 = 4 и 3*(-1) + 1 = -2; 2) если х = 16, то это числа 16 - 7 = 9, 16 + 5 = 21 и 3*16 + 1 = 49. Действительно, в случае (1) первое число -8, второе -8*(-0,5) = 4 и третье 4*(-0,5) = -2, а в случае (2) первое 9, второе 9*(7/3) = 21 и третье 21*(7/3) = 49. ответ: 1) -8, 4 и -2; 2) 9, 21 и 49. Пояснение. При решении задание использовано свойство членов геометрической прогрессии, в котором произведение двух членов прогрессии равно квадрату того ее члена, который расположен ровно посередине между первыми двумя членами. Удачи!
1) y³ - 2y² = y - 2 y³ - 2y² - y + 2 = 0 Разложим на множители и решим: ( y - 2)(y - 1)(y + 1) = 0 Произведение равно 0,когда один из множителей равен 0,значит, y - 2 = 0 y = 2 y - 1 = 0 y = 1 y + 1 = 0 y = -1 ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0 x⁴ - 14x² + 49 - 4x² - 17 = 0 x⁴ - 18x² + 32 = 0 Разложим на множители и решим: (x² - 16)(x² - 2) = 0 Произведение равно 0,когда один из множителей равен 0,значит, x² - 16 = 0 x² = 16 x = 4 x = - 4 x² - 2 = 0 x² = 2 x = +/- √2