В решении.
Объяснение:
1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =
= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =
= 0,064m³ + n¹².
2. 68,4² − 68,3² = разность квадратов, разложить по формуле:
= (68,4 - 68,3)*(68,4 + 68,3) =
= 0,1 * 136,7 = 13,67.
3. Разложи на множители:
36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).
Выбери все возможные варианты:
(6t+7)⋅(6t+7)
(6t−7)⋅(6t−7)
(6t−7)2
(6t+7)⋅(6t−7)
4. Представь квадрат двучлена в виде многочлена:
(18x⁴ − 34)² = квадрат разности, разложить по формуле:
= 324х⁸ - 1224х⁴ + 1156.
1. 6sin²x - 7sinx - 5 = 0
t = sinx: [-1;1]
sinx=-0,5.
2. 3sin²x + 10 cosx - 10 = 0
cosx=1
3. 2sin²x + 11sinx*cosx + 14cos²x = 0
Поделим данное однородное уравнение на квадрат косинуса и сделаем замену переменной: tgx=t
tgx=-2 tgx=-3,5
Имеем две группы углов:
4. 3tg x - 5ctg x + 14 = 0
Пусть tgx=t
В ответе имеем две группы углов:
5. 10sin²x - sin2x = 8cos²x
Аналогично задаче 4, сделаем замену переменной tgx=t после деления на квадрат косинуса и сокращения на 2:
В ответе имеем две группы углов:
6. 1 - 6cos²x = 2sin2x + cos2x
Применив основное тождество и формулы синуса и косинуса двойного угла, получим:
В ответе имеем две группы углов: