М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vool23
vool23
27.12.2021 14:22 •  Алгебра

Решите тригонометрические уравнения: 1. 6sin²x - 7sinx - 5 = 0 2. 3sin²x + 10 cosx - 10 = 0 3. 2sin²x + 11sinx*cosx + 14cos²x = 0 4. 3tg x - 5ctg x + 14 = 0 5. 10sin²x - sin2x = 8cos²x 6. 1 - 6cos²x = 2sin2x + cos2x

👇
Ответ:
жансая87
жансая87
27.12.2021

1. 6sin²x - 7sinx - 5 = 0

t = sinx: [-1;1]

6t^2-7t-5=0;\ \ D=169;\ \ t_1=-0,5;\ \ t_2=\frac{5}{3}1.

sinx=-0,5.

x=(-1)^{k+1}\frac{\pi}{6}+\pi*k;\ \ k:Z.

 

2. 3sin²x + 10 cosx - 10 = 0

3(1-cos^2x)+10cosx-10=0

3cos^2x-10cosx+7=0;\ \ cosx=t:\ [-1;1].

3t^2-10t+7=0;\ \ D=16;\ \ t_1=1;\ \ t_2=\frac{7}{3}1.

cosx=1

x=2\pi*k;\ \ k:Z.

 

3. 2sin²x + 11sinx*cosx + 14cos²x = 0 

Поделим данное однородное уравнение на квадрат косинуса и сделаем замену переменной: tgx=t

2t^2+11t+14=0;\ \ D=9;\ \ t_1=-3,5;\ \ \ t_2=-2.

tgx=-2     tgx=-3,5

Имеем две группы углов:

-arctg2+\pi*k;\ \ \ \ -arctg3,5+\pi*n;\ \ \ k,n:Z.

4. 3tg x - 5ctg x + 14 = 0

Пусть tgx=t

3t-\frac{5}{t}+14=0\ \ \ (t\neq0).

3t^2+14t-5=0;\ \ \ D=256;\ \ t_1=\frac{1}{3};\ \ t_2=-5.

В ответе имеем две группы углов:

-arctg5+\pi*k;\ \ \ \ \ arctg\frac{1}{3}+\pi*n;\ \ \ k,n:Z.

 

5. 10sin²x - sin2x = 8cos²x

10sin^2x-2sinxcosx-8cos^2x=0.

Аналогично задаче 4, сделаем замену переменной tgx=t после деления на квадрат косинуса и сокращения на 2:

5t^2-t-4=0;\ \ \ D=81;\ \ t_1=1;\ \ \ t_2=-0,8.

В ответе имеем две группы углов:

-arctg0,8+\pi*k;\ \ \ \ \ \frac{\pi}{4}+\pi*n;\ \ \ k,n:Z.

 

6. 1 - 6cos²x = 2sin2x + cos2x

Применив основное тождество и формулы синуса и косинуса двойного угла, получим:

sin^2x+cos^2x-6cos^2x-4sinxcosx-cos^2x+sin^2x=0;

2sin^2x-4sinxcosx-6cos^2x=0\ \ /2cos^2x;\ \ \ tgx=t.

t^2-2t-3=0;\ \ t_1=-1;\ \ \ t_2=3.

В ответе имеем две группы углов:

-\frac{\pi}{4}+\pi*k;\ \ \ \ \ arctg3+\pi*n;\ \ \ k,n:Z.

 

 

 

4,8(72 оценок)
Открыть все ответы
Ответ:
Sunanam
Sunanam
27.12.2021

В решении.

Объяснение:

1. (0,4m + n⁴)(0,16m² - 0,4mn⁴ + n⁸) =

= 0,064m³ - 0,16m²n⁴ + 0,4mn⁸ + 0,16m²n⁴ - 0,4mn⁸ + n¹² =

= 0,064m³ + n¹².

2. 68,4² − 68,3² =    разность квадратов, разложить по формуле:

= (68,4 - 68,3)*(68,4 + 68,3) =

= 0,1 * 136,7 = 13,67.

3. Разложи на множители:

36t² + 84t + 49 = (6t + 7)² = (6t + 7)*(6t + 7).

Выбери все возможные варианты:

(6t+7)⋅(6t+7)

(6t−7)⋅(6t−7)

(6t−7)2

(6t+7)⋅(6t−7)

4. Представь квадрат двучлена в виде многочлена:

(18x⁴ − 34)² = квадрат разности, разложить по формуле:

= 324х⁸ - 1224х⁴ + 1156.

4,8(94 оценок)
Ответ:
1
a)f`(x)=√(x²-1)+2x(x-1)/2√(x²-1)=(x²-1+x²-x)/√(x²-1)=(2x²-x-1)/√(x²-1)
f`(2)=(8-2-1)/(√(4-1)=5/√3
b)y`=-1/√(1-(2x-1)³/3)*2/√3=-2√3/√3*√(2-4x²+4x)=-2/√(2-4x²+4x)
2
y=x³-6x²+9
D(y)=R
y(-x)=-x³-6x²+9 ни четная,ни нечетная
(0:9)-точка пересечения с осью оу
y`=3x²-12x=3x(x-4)=0
x=0  x=4
             +                  _                      +
(0)(4)
возр x∈(-∞;0) U (4;∞)
убыв x∈(0;4)
ymax=y(0)=9
ymin=y(4)=-31
доп.точки
y(-1)=2
y(1)=4
y(5)=-16
график во вложении
3
1)Sx²dx/√(x³-5)=1/3Sdt/√t=2t/3=2√(x³-5)/3+C
t=x³-5⇒dt=3x²dx
2)S(4-3x)*e^3xdx=S(4e^3x-3x*e^3x)dx=-3Se^3x*xdx+4Se^3xdx=
=-e^3x*x+e^3x/3+4e^3x/3=-e^3x*x+5e^3x/3=e^3x(5/3-x)+C
В 4 в условии ошибка
4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ