1) (х⁴+4х²-5)/ (x²+5x+6) ≤ 0
x²=a
4a²+a-3=0
D=1+48=49
a1=(-1-7)/8=-1 ⇒x²=-1 U a2=(-1+7)/8=0,75⇒x²=3/4⇒x=-√3/2 U x=√3/2
x1+x2=-5 U x1*x2=6⇒x1=-3 U x2=-2
+ _ + _ +
(-3)(-2)[-√3/2][√3/2]
x∈(-3;-2) U [-√3/2;√3/2]
2)(x⁴-2x²-8)/ (x⁴-2x²-3) > 0
x²=a
a²-2a-8=0
a1=a2=2 U a1*a2=-8
a1=-2⇒x²=-2 U a2=4⇒x²=4⇒x=-2 U x=2
x²=b
b²-2b-3=0
b1=b2=2 U b1*b2=-3
b1=-1⇒x²=-1 U b2=3⇒x=-√3 U x=√3
+ _ + _ +
(-2)(-√3)(√3)(2)
x∈(-∞;-2) U (-√3;√3) U (2;∞)
1) (х⁴+4х²-5)/ (x²+5x+6) ≤ 0
x²=a
4a²+a-3=0
D=1+48=49
a1=(-1-7)/8=-1 ⇒x²=-1 U a2=(-1+7)/8=0,75⇒x²=3/4⇒x=-√3/2 U x=√3/2
x1+x2=-5 U x1*x2=6⇒x1=-3 U x2=-2
+ _ + _ +
(-3)(-2)[-√3/2][√3/2]
x∈(-3;-2) U [-√3/2;√3/2]
2)(x⁴-2x²-8)/ (x⁴-2x²-3) > 0
x²=a
a²-2a-8=0
a1=a2=2 U a1*a2=-8
a1=-2⇒x²=-2 U a2=4⇒x²=4⇒x=-2 U x=2
x²=b
b²-2b-3=0
b1=b2=2 U b1*b2=-3
b1=-1⇒x²=-1 U b2=3⇒x=-√3 U x=√3
+ _ + _ +
(-2)(-√3)(√3)(2)
x∈(-∞;-2) U (-√3;√3) U (2;∞)
Задание 1.
f(x)=x²-4x+2.
f(3)= 3²-4×3+2;
f(3)= 9-12+2;
f(3)= -1.
ОТВЕТ: f(3)= -1.
Задание 2.
y= x²+6x-2.
Точка А (3;23)
Подставляем в функцию значения абсциссы и ординаты точки А и проверяем равенство.
23= 3²+6×3-2;
23=9+18-2;
23=25
23 не равно 25, значит, график данной функции не проходит через точку А.
ОТВЕТ: не проходит.
Задание 3.
у= х²-8х+7.
Нужно найти координаты вершины.
Хв -?, Yв -?
Хв= -b/2a= 8/2=4
Yв= 4²-8×4+7=16-32+7= -9
Вершина параболы имеет координаты (4; -9).
ОТВЕТ: (4; -9).
Задание 4.
у = х² + 5х + 6;
Чтобы найти, в какой точке график данной функции пересекается с осью ординат ОY, нужно вместо "х" поставить 0 и решить уравнение.
у= 0+0+6;
у=6.
Координаты искомой точки — (0;6).
ОТВЕТ: (0;6).