Каждой точке (х; у) графика у = f(x) соответствует единственная точка (х; - у) графика у =- f(x) и наоборот. Точки (х; у) и (х; - у) симметричны относительно оси ОХ. Значит, графики у =f(x) и y = -f(x) симметричны относительно оси ОХ.
Пример 1
Построить график функции у = - .
Решение
Строим график функции у = , а затем строим симметрично относительно оси ОХ.
Симметрия относительно оси ОУ (оси ординат)
Каждой точке (х; у) графика у = f(x) соответствует единственная точка (-х; у) графика у = f(-x), и наоборот. Но точки (х; у) и (-х; у) симметричны относительно оси ОУ, значит, графики у = f(x) и у = f(-x) симметричны относительно оси ОУ.
Пример 2
Построить график функции у = .
Решение
Строим график функции у =, а затем строим симметрично относительно оси ОУ.
Пример 3
Построить график функции у = -
Решение
Выполним ряд последовательных преобразований:
строим график функции у = ;
строим симметрично относительно оси ОУ, т. е. получаем график функции у = ;
строим симметрично относительно оси ОХ, т.е. получаем искомый график функции у = -.
Параллельный перенос (сдвиг) вдоль оси абсцисс
Пусть дан график функции у = f(x).
Чтобы построить график функции у = f(x+a), где а – некоторое данное число, достаточно график функции у= f(x) перенести параллельно направлении оси ОХ на расстояние в положительном направлении, если а<0, и в отрицательном направлении, если а>0.
Пример 4.
Построить графики функций у =(х - 3)² и у =(х + 1)².
Решение
Строим график функции у = х² (пунктиром). Переносим его дважды: в положительном направлении оси ОХ на расстояние, равное 3, и получаем график у = (х – 3)²; в отрицательном направлении оси ОХ на расстояние, равное 1, и получаем график у = (х + 1)².
Параллельный перенос (сдвиг) вдоль оси ординат
Пусть дан график функции у =f(x).
Чтобы построить график функции у = f(x) + a, где а – некоторое данное число, достаточно график функции у = f(x) перенести параллельно оси ОУ на расстояние в положительном направлении, если а >0, и в отрицательном, если а /I>0.
Пример 5.
Построить график функции у = 5+.
Решение
Строим график у = (пунктиром). Переносим его в положительном направлении оси ОХ на расстояние, равное 4, и получаем график у =, а затем переносим в положительном направлении оси ОУ на расстояние, равное 5, получаем искомый график у = 5 +.
1.
а) (x - 3)(x -7) - 2x (3x - 5) = x² - 7x - 3x + 21 - 6x² + 10x = -5x² + 21 = 21 - 5x²
б) 4a (a - 2) - (a - 4)² = 4a² - 8a - (a² - 8a + 16) = 4a² - 8a - a² + 8a - 16 = 3a² - 16
в) 2 (m + 1)² - 4m = 2 (m² + 2m + 1) - 4m = 2m² + 4m + 2 - 4m = 2m² + 2 = 2 (m² + 1)
2.
a) x³ - 9x = x (x² - 9) = x (x - 3)(x + 3)
б) -5a² - 10ab - 5b² = -5 (a² + 2ab + b²) = -5 (a + b)²
3. (y² - 2y)² - y² (y + 3)(y - 3) + 2y (2y² + 5) = y⁴ - 4y³ + 4y² - y² (y² - 9) + 4y³ + 10y = y⁴ - 4y³ + 4y² - y⁴ + 9y² + 4y³ + 10y = 13y² + 10y = y (13y + 10)
4.
а) 16x⁴ - 81 = (4x² - 9)(4x² + 9) = (2x - 3)(2x + 3)(4x² + 9)
б) x² - x - y² - y = (x² - x) - (y² + y) = x (x - 1) - y (y + 1)
5. x² - 4x + 9 = x² - 4x + 4 - 4 + 9 = (x - 2)² + 5
уравнение при любом значении х, будет > 0, потому что выражение в скобках возведено в квадрат, а любое значение х в квадрате будет больше или равняться нулю
Объяснение: