A(2 ; 4) 4=2^2 точка А принадлежит B(3 ;6) 6<3^2 точка B не принадлежит C(4 ; 8) 8<4^2 точка C не принадлежит D(-3 ; 9) 9= (-3)^2 точка D принадлежит R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит
Всё решается просто. так как cos2x=2*(cosx)^2-1 (эту формулу можно найти в учебнике или доказать) , то подставляя в уравнение получим: cos2x+4cosx-5=0 2*(cosx)^2-1+4cosx-5=0 (cosx)^2+2(cosx)-3=0 это простое квадратное уравнение относительно cosx. то есть получается два решения: cosx=1 и cosx=-3 но подходит только одно решение cosx=1, так как |cosx|< =1 осталось решить простое тригонометрическое уравнение cosx=1, по формуле тригонометрии cosx=a, x=(+/-)arccosa+2*pi*n pi-это знаменитое число 3,14159 n-любое целое число вот и всё решение.
1) y = x/3; 2) y = 3x
Объяснение:
6x^4 - 11x^3*y - 18x^2*y^2 - 11xy^3 + 6y^4 = 0
Наша цель - свести уравнение к квадратному.
Сначала делим всё на y^4
6x^4/y^4 - 11x^3/y^3 - 18x^2/y^2 - 11x/y + 6 = 0
6(x/y)^4 - 11(x/y)^3 - 18(x/y)^2 - 11(x/y) + 6 = 0
Затем делаем замену x/y = a
6a^4 - 11a^3 - 18a^2 - 11a + 6 = 0
Теперь делим все на a^2
6a^2 - 11a - 18 - 11/a + 6/a^2 = 0
6(a^2 + 1/a^2) - 11(a + 1/a) - 18 = 0
А теперь опять делаем замену a + 1/a = t, тогда
t^2 = (a + 1/a)^2 = a^2 + 2a*(1/a) + (1/a)^2 = a^2 + 1/a^2 + 2
Отсюда a^2 + 1/a^2 = t^2 - 2
Надо заметить, что при любом a > 0 будет a + 1/a >= 2, и
при любом a < 0 будет a + 1/a <= -2.
Причем равенство будет при а = 1 и а = -1 соответственно.
6(t^2 - 2) - 11t - 18 = 0
6t^2 - 12 - 11t - 18 = 0
6t^2 - 11t - 30 = 0
Получили наконец-то квадратное уравнение
D = 11^2 - 4*6*(-30) = 121 + 720 = 841 = 29^2
t1 = a + 1/a = (11 - 29)/12 = -18/12 = -3/2 ∈ (-2; 0) - не подходит.
t2 = a + 1/a = (11 + 29)/12 = 40/12 = 10/3 = 3 + 1/3 > 2 - подходит, тогда
а1 = 3, а2 = 1/3
Делаем обратную замену
1) a1 = x/y = 3; y = x/3
2) a2 = x/y = 1/3; y = 3x