1/144*10^4
1/12*10^5
1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)
. а) 5(4b - 1,2) = 20b - 6;
б) 3b(4 - 5b) = 12b - 15b² - здесь условие непонятно, я решила поставить "-";
в) 0,2y(4y + 9) = 0,8у² + 1,8у;
г) -8у²(2,5y - 0,6) = -20у³ + 4,8у².
2. a) 5a(2a² + 4a - 3) = 10а³ + 20а² - 15а;
б) 4a²(5 - 6a + 3a²) = 20а² - 24а³ + 12а⁴;
в) 0,8(7 - 8x + 9x²) = 5,6 - 6,4х + 7,2х²;
г) -1,5x(4x² - 6,4x +7 ) = -6х³ + 9,6х² - 10,5х;
д) x - 2(x - 3(x + 4)) + 5 = х - 2(х - 3х - 12) + 5 = х - 2(-2х - 12) + 5 = х + 4х + 24 + 5 = 5х + 29.
3. а) 7x - 21 = 7(х - 3);
б) 8x² - 12x + 24 = 4(2х² -3х + 6);
в) 13x + 17x² = х(13 + 17х);
г) 6x³ + 8x² - 10x = 2х(3х² + 4х - 5).
Объяснение:
144*10 в степени -4
12*10 в степени -5