М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
typoiya
typoiya
03.01.2020 13:40 •  Алгебра

Сформулируйте свойства функции y=x^2. как отражаются эти свойства на графике функции=x^2

👇
Ответ:
v3tpr33
v3tpr33
03.01.2020

Свойства функции у = х²

1. Область определения D(y) = R.

2. Множество значений E(y) = [0; +∞).

3. Наибольшего значения нет, наименьшее значение у = 0 функция принимает в точке х = 0.

4. График функции пересекает оси координат в точке (0; 0).

5. Нуль функции - значение аргумента х = 0.

6. Функция принимает положительные значения на промежутках

(-∞; 0) ∪ (0; +∞). Отрицательных значений функция не принимает.

7. Функция возрастает на промежутке [0; +∞) и убывает на промежутке (-∞; 0].

8. Функция у = х² - четная, непериодическая.

График функции называется параболой.

4,6(62 оценок)
Открыть все ответы
Ответ:
данил20888
данил20888
03.01.2020

№13 - \frac{3}{4} = 0.75

№14 - 2

№15 - 2

Объяснение:

По определению производной:

f'(x)=\lim_{\Delta x \to \infty} \frac{f(x + \Delta x)-f(x)}{\Delta x}\\\Delta x = x_2 - x_1

Заметим, что \frac{f(x + \Delta x)-f(x)}{\Delta x} - это отношение \frac{\Delta y}{\Delta x}, т.е. тангенс угла наклона касательной в точке x_0.

Тогда совершенно очевидно, как решать подобного рода задачи:

анализируем только касательнуюнаходим точку, где касательная проходит через угол клеточкинаходим тангенс угла, образованного осью ox и касательной.

На примере задания №14:

смотрим на прямуювидим, что она проходит через точку (2; \: 4)находим тангенс (делим противолежащий катет на прилежащий, в данном случае - высоту на длину)ответ: 2
4,8(10 оценок)
Ответ:
karinasing
karinasing
03.01.2020

№13 - \frac{3}{4} = 0.75

№14 - 2

№15 - 2

Объяснение:

По определению производной:

f'(x)=\lim_{\Delta x \to \infty} \frac{f(x + \Delta x)-f(x)}{\Delta x}\\\Delta x = x_2 - x_1

Заметим, что \frac{f(x + \Delta x)-f(x)}{\Delta x} - это отношение \frac{\Delta y}{\Delta x}, т.е. тангенс угла наклона касательной в точке x_0.

Тогда совершенно очевидно, как решать подобного рода задачи:

анализируем только касательнуюнаходим точку, где касательная проходит через угол клеточкинаходим тангенс угла, образованного осью ox и касательной.

На примере задания №14:

смотрим на прямуювидим, что она проходит через точку (2; \: 4)находим тангенс (делим противолежащий катет на прилежащий, в данном случае - высоту на длину)ответ: 2
4,5(71 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ