Запишем все пары натуральных чисел что дают 2016: 1+2015,2+2014,3+2013,,1008+1008,,2013+3,2014+2,2015+1. То есть всего 2015 пар. Но пара 1008+1008 не подходит,тк множество A не содержит равных чисел. Также все пары что идут после 1008 равны тем что идут до 1008.Таким образом общее число таких пар: (2015-1)/2=1007. Первые 15 пар не подходят тк числа в множестве от 1 до 2000. То есть остается 1007-15=992. Чтобы число чисел в модмножестве А было максимальным. Нужно взять все числа в данном множестве ,что не входят в данные 992 пары. И половину чисел входящих в эти 992 пары,тк если взять больше половины,то появиться хотя бы одна пара дающая в сумме 2016.(Надеюсь понятно) . Другими словами максимальное число чисел подмножество А равно: N=(2000-2*992)+992=2000-992=1008. ответ:1008.
∠ABD=44° ∠ADB=76°
Объяснение:
Поскольку ABCD параллелограмм, то:
BC=AD=8 см
∠BCD=∠BAD
Согласно теореме синусов:
sin∠ABD≈0.6928
По таблице Брадиса:
∠ABD≈44°
∠ADB=180°-∠ABD-∠BAD=180°-44°-60°=76°