если имелось в виду радианы, то
sin2cos3tg4
1.57< pi/2 <2<x<3.14<pi
поєтому sin 2>0
1.57< pi/2 <2<x<3/14<pi
cos 3<0
3.14<pi<4<<4.71<3pi/2
поєтому tg 4>0
произведение двух положительных и одного отрицательного число отрицательное,
знак произведения минус
если имелось в виду градусы, то от 0 до 90 градусов тригонометрические функции от углов положительные и знак тогда плюс у произведения
б) ((sinA-cosA)^2 -1)/(tgA-sinA*cosA)=
формула квадрата двучлена, формула для тангенса tg a=sin a/cos a
=(sin^2A-2sinAcosA+cosA^2 -1)/(sinA/cosA-sinA*cosA)=
основное тригонометрическое тождество sin^2a+cos^2a=1, вынос общего множителя sinA?, приведение к общем знаменателю, пправила операций деления дробей
=(1-2sinAcos A-1)*cosA/(sinA*(1-cos^2A))=
соприведение подобных членов, сокращение дроби на sinA, основное тригонометрическое тождество
=-2cos^2A/sin^2A=
формуда для котангенса ctg a=cos a/sina
-2ctg^2A
доказано.
1. x² - 6x + 9 = 0
D = 0
x = -b/2a = 6/2 = 3
Відповідь: в) 1
2. x² - 7x = -6
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ + x₂ = 6 + 1 = 7
Відповідь: а) 7
3. x² - 7x + 6 = 0
x² - 7x + 6 = 0
D = b² - 4ac = 49 - 24 = 25
√D = √25 = 5
x₁ = (-b + √D)/2a = (7 + 5)/2 = 12/2 = 6
x₂ = (-b - √D)/2a = (7 - 5)/2 = 2/2 = 1
x₁ · x₂ = 6 · 1 = 6
Відповідь: г) 6
4. x² - 15x + 56 = 0
x² - 7x - 8x + 56 = 0
x(x - 7) - 8(x - 7) = 0
(x - 7)(x - 8) = 0
x - 7 = 0
x₁ = 7
x - 8 = 0
x₂ = 8
Відповідь: в) 7i 8
(ax+5)²=a²x²+10ax+25
Объяснение: