За графіком функції у = sinx знайдіть три наближени по задовольняють за яких sin x= - 1 скільки існує таких значень х, що зало тіть два числових дане рівняння?
Для вирішення цього завдання можна використати біноміальний розподіл.
Біноміальний розподіл характеризується двома параметрами: ймовірністю успіху в окремому експерименті (у випадку дослідження якості продукції - 0,95) та кількістю спроб (у випадку даного завдання - 160).
Формула для обчислення ймовірності успіху в певній кількості спроб у біноміальному розподілі виглядає так:
P(X = k) = C(n, k) * p^k * (1 - p)^(n - k),
де
P(X = k) - ймовірність, що точно k спроб з n будуть успішними,
C(n, k) - коефіцієнт біноміального коефіцієнту (кількість ів вибрати k спроб з n),
p - ймовірність успіху в окремому експерименті (у нашому випадку 0,95),
k - кількість успішних спроб,
n - загальна кількість спроб.
Застосуємо цю формулу для знаходження ймовірності того, що 152 з 160 товарів будуть відмінної якості:
чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам: у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу: х= 0 1 4 1/4 у= 0 1 2 1/2 Отмечаем точки на плоскости Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу: х= 0 4 у= 2 -2 Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1) Всё!
Відповідь:
Для вирішення цього завдання можна використати біноміальний розподіл.
Біноміальний розподіл характеризується двома параметрами: ймовірністю успіху в окремому експерименті (у випадку дослідження якості продукції - 0,95) та кількістю спроб (у випадку даного завдання - 160).
Формула для обчислення ймовірності успіху в певній кількості спроб у біноміальному розподілі виглядає так:
P(X = k) = C(n, k) * p^k * (1 - p)^(n - k),
де
P(X = k) - ймовірність, що точно k спроб з n будуть успішними,
C(n, k) - коефіцієнт біноміального коефіцієнту (кількість ів вибрати k спроб з n),
p - ймовірність успіху в окремому експерименті (у нашому випадку 0,95),
k - кількість успішних спроб,
n - загальна кількість спроб.
Застосуємо цю формулу для знаходження ймовірності того, що 152 з 160 товарів будуть відмінної якості:
P(X = 152) = C(160, 152) * 0,95^152 * (1 - 0,95)^(160 - 152).
Розрахуємо це значення:
P(X = 152) ≈ 0,0747
Отже, ймовірність того, що 152 з 160 товарів будуть відмінної якості, становить близько 0,0747 або 7,47%.
Пояснення: