Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение:
Пусть x км/ч — скорость второго автомобиля, тогда (x + 10) км/ч — скорость первого автомобиля. Они встретились через 3 часа. За это время второй автомобиль проехал 3x км, а первый автомобиль — 3(x + 10) км. Используя эти данные и условия задачи, составим уравнение и решим его:
3(x + 10) + 3x = 450,
3x + 30 + 3x = 450,
6x = 450 - 30,
6x = 420,
x = 420 / 6,
x = 70 км/ч.
Мы нашли скорость второго автомобиля. Теперь найдем скорость второго автомобиля:
70 + 10 = 80 км/ч.
ответ: скорость первого автомобиля равна 80 км/ч, скорость второго автомобиля — 70 км/ч.
Объяснение:
√(2 - √3)^x - (2 + √3)^x - 2 = 0
(2 - √3)(2 + √3) = 2² - (√3)² = 4 - 3 = 1
значит 2 - √3 = 1/(2 + √3)
√(2 - √3)^x - 1/(2 - √3)^x - 2 = 0
(2 - √3)^x = t > 0
t - 1/t - 2 = 0
t² - 2t - 1 = 0
D = 4 + 4 = 8
t12 = (2 +- 2√2)/2 = 1 +- √2
t1 = 1 - √2 < 0 не подходит
t2 = 1 + √2
(2 - √3)^x = 1 + √2
log(2 - √3) (2 - √3)^x = log(2 - √3) (1 + √2)
x = log(2 - √3) (1 + √2)
вероятно ошибка
надо √(2 - √3)^x + (2 + √3)^x - 2 = 0
тогда
(2 - √3)^x = t > 0
t = 1
(2 - √3)^x = 1
x = 0