Найдите двухцифровое число, которое в 4 раза больше суммы своих цифр и в 6 разів больше произведение своих цифр
Объяснение:
Пусть 1 цифра неизвестного числа а ,
вторая цифра - в . Тогда само двузначное число 10а+в.
По условию 10а+в в 4 раза больше чем а+в, т.е 10а+в=4(а+в),
и 10а+в в 6 раз больше а*в , т.е 10а+в=6ав.
Решим систему
{10а+в=4(а+в)
{10а+в=6ав
Из первого уравнения 6a=3в ⇒ в=2а.
Подставим во второе 10а+2а=6а*2а ⇒ 12а=12а² ⇒а=0 или а=1.
Если а=0 , то нет двузначного числа( разряд десятков исчезает). Не подходит.
Если а=1 , то в=2 , само число 10*1+2=12.
Проверим :
-сумма цифр 1+2=3 , число 12 больше в 4 раза;
-произведение цифр 1*2=2, число 12 больше в 6 раз.
1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1