Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
Пусть v - скорость пешехода, 6v - скорость мотоцикла; S - расстояние между пунктами А и В.
Рассмотрим момент времени, когда мотоциклист догнал пешехода. Пусть а - расстояние, которое осталость пройти пешеходу до пункта В.
Мотоциклист потратил время, чтобы доехать до пункта В, отдохнуть там полчаса, прежде чем вернулся. Это время такое:
За это время, пешеход успел пройти:
И ему осталось ещё пройти:
В этот момент мотоциклист отправился обратно. Вторая встреча мотоциклиста с пешеходом произошла через час. Однако в течение это час он полчаса отдыхал и ехал расстояние а. Поэтому это время надо вычесть из 1 часа. А вычитать надо такое время:
Итак, пешеходу и мотоциклисту необходима преодолеть расстояние:
за время:
Составляем уравнение и кое-что находим:
Теперь рассмотрим схему движения с момента их первой встречи и до полного завершения путешествия, для пешехода это пункт В, для мотоциклиста - пункт А. После первой встречи мотоциклист проехал расстояние а, затем отдыхал полчаса и, наконец, вернулся в исходный пункт А. Пешеход же только расстояние а. Т.к. они одновременно попали в указанные пункты, то их время в пути тоже одинаково. Составляем уравнение:
Вроде бы ничего и не получается. Однако обратите внимание на ! А это как раз то, что нам надо. Это время, за которое пешеход преодолеет расстояние S (между А и В), идя со скоростью v. Кроме этого, ранее мы вычислили, что a=2v.
/ это умножение или деление быстрей сейчас решу