Пусть сторона куба при распиливании была разделена на х частей.
Тогда неокрашенных кубиков (внутренних) будет (х-2)^3, а число кубиков, у которой окрашена ровно одна грань (кубики на гранях большого, не прилежащие к ребрам) равно 6·(х-2)^2.
Получаем уравнение (x-2)^3 = 6·(x-2)^2 или x-2 = 6, x = 8
Куб распилили на 8^3 = 512 кубиков.
——————————————————————
Кубиков с 3 окрашенными гранями – 8
Кубиков с 2 окрашенными гранями – 6·12 = 72
Кубиков с 1 окрашенной гранью – 6·6·6 = 216
Неокрашенных кубиков – 6·6·6 = 216
Пара чисел (2;-2) являются точкой пересечения двух графиков. заданных уравнениями системы.
Общее уравнение прямой: Ах+Ву+С=0
х=2; у=-2
1 уравнение: пусть А=4; В=-4, тогда 4х-4у+С=0
4*2-4*(-2)=16
С=0-16=-16
4х-4у-16=0
2 уравнение: пусть А=8; В=1, тогда: 8х+у+С=0
8*2+1*(-2)=14
С=0-14=14
8х+у-14=0
{4x-4y-16=0 => x-y-4=0 => x=y+4
{8x+y-14=0 => 8(y+4)+y-14=0
9y=-18
y=-2
x=-2+4
x=2
Решением данной системы является пара чисел (2;-2)
Проверка: 4x-4y-16=8x+y-14
4х-8х-4у-у-16+14=0
-4х-5у-2=0
х=2; у=-2 - -4*2-5*(-2)-2=
-8+10-2=
-10+10=0
Выразим у через х для графического решения:
{4x-4y-16=0 =>у=х-4
{8x+y-14=0 => у=-8х+14
График во вложении
========================
Объяснение: