Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.
3. sin^2 x + 6sin x cos x + 8 cos^2 x = 0/cos²x tg²x+6tgx+8=0 tgx=a a²+6a+8=0 a1+a2=-6 U a1*a2=8 a1=-4⇒tgx=-4⇒x=-arctg4+πk,k∈z a2=-2⇒tgx=-2⇒x=-arctg2+πn,n∈z
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.