М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SizovMarina
SizovMarina
11.06.2022 07:33 •  Алгебра

Костя ищет пять различных простых чисел таких что сумма трёх из них - тоже простое число. докажите, что такого набора не существует

👇
Ответ:
nbis2000
nbis2000
11.06.2022

Рассмотрим остатки при делении на три.Если мы нашли простые числа,которые дают одинаковые остатки на 3,то задача решена,поскольку,если у них остатки соответственно равны r,r,r,то тогда сумма остатков равно 3r,что кратно 3,то есть дают нулевой остаток при делении на три ,и сумма любых 3 простых чисел больше трех,так наименьшие простые числа это 2 3 5,сумма которых точно больше 3.

То есть кратны 3,и их сумма имеет вид 3k ,где k>1,k-целое.

Теперь предположим,что мы не нашли таких чисел. Тогда заметим,что найдется тогда три числа ,дающие разные остатки при делении на 3,так как если это не так,то каждого вида остатков не более двух(если их хотя бы 3,то это первый случай),а всего видов не более двух(при делении на три есть три различные остатки 0,1,2,одного у нас нет),то есть чисел не более чем 2*2=4,а у нас их 5.

Тогда мы нашли числа,дающие различные остатки при делении на 3.То есть это 0 1 и 2. Но сумма остатков 0+1+2=3,что кратно 3,то есть сумма исходных чисел кратны 3,и больше 3.

Противоречие. Значит,такого набора не существует.

4,5(12 оценок)
Открыть все ответы
Ответ:
Дублирую для Вас решение - я его только что кому-то другому написал, но вот отыскал уже:

задача - найти радиус окружности, описанной вокруг квадрата, то есть дна бассейна.

нетрудно заметить, что радиус этот совпадает с половиной диагонали того самого квадрата. Вот ее и будем искать.

диагонали квадрата равны  и пересекаются под прямым углом, а значит - искомая половина диагонали  - катет прямоугольного равнобедренного треугольника, гипотенузой которого является сторона квадрата.
Зная гипотенузу по теореме Пифагора легко подсчитаем катет, а значит,
найдем сторону квадрата - и катет (он же радиус, он же высота подвешенной лампочки) у нас в кармане!

приступим:

сторона квадрата - корень из площади =  корень из 32 = 4 корня из двух

осталось посчитать упоминавшийся ранее катет, он же искомый радиус:
2r в квадрате = квадрат гипотенузы  = 32
r = корень из 32 деленный на 2 = два корня из двух

это все!
Лампа висит на высоте 2 корня из двух [метров]

Ура!)
4,4(58 оценок)
Ответ:
hopik2
hopik2
11.06.2022
А) (4^2)^1/2 + (3^3)^1/3 + (3^4)^3/4 - (2^3)^1 цел. 1/4= 4 + 3 + 27 - 16 = 18 (^-степень, поясняю, ты просто представляешь числа в других степенях, например 16 это 4^2, да еще в степени 1/2, при возведении степени в степень показатели перемножаются, то есть 2*1/2=1, число в первой степени есть само число, ну и так далее, надеюсь понятно, я не умею объяснять)))
б) не могу сообразить
в) 125х^0 = 1 (любое число в нулевой степени 1), а 1^2/3 = 1,(единица в любой степени 1), не уверена, но вполне логично))
г) знаменатель не трогаем, работаем с числителем, при умножении показатели степеней складываются, то есть х^1/4*x^1/2= x^3/4 (1/4+1/2=3/4), теперь x^3/4 разделить на х^3/4=1
д) (5^3)1/3*((11^2)^1/2 + (2^7)^5/7 - (3^4)^6/4) = 5*(11+32-729)= - 3430 (аналогично тому, что делали в а, представляем числа другими числами в степенях, степени перемножаем и т.д.)
е) тоже не соображу
ж) (81а^8)^3/4= (81a)^6 (при возведении степени в степени показатели перемножаем: 8*3/4= 2*3=6)
з) числитель: х^2/5*x^1/10=x^5/10= х^0.5 (при умножении показатели складываем, 2/5+1/10=5/10), в числителе у нас х^0.5 а в знаменателе (x^0.5)^3, сокращаем все на х^0.5 и получаем 1/(x^0.5)^2= 1/x^1=1/x
4,7(65 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ