Рассмотрим остатки при делении на три.Если мы нашли простые числа,которые дают одинаковые остатки на 3,то задача решена,поскольку,если у них остатки соответственно равны r,r,r,то тогда сумма остатков равно 3r,что кратно 3,то есть дают нулевой остаток при делении на три ,и сумма любых 3 простых чисел больше трех,так наименьшие простые числа это 2 3 5,сумма которых точно больше 3.
То есть кратны 3,и их сумма имеет вид 3k ,где k>1,k-целое.
Теперь предположим,что мы не нашли таких чисел. Тогда заметим,что найдется тогда три числа ,дающие разные остатки при делении на 3,так как если это не так,то каждого вида остатков не более двух(если их хотя бы 3,то это первый случай),а всего видов не более двух(при делении на три есть три различные остатки 0,1,2,одного у нас нет),то есть чисел не более чем 2*2=4,а у нас их 5.
Тогда мы нашли числа,дающие различные остатки при делении на 3.То есть это 0 1 и 2. Но сумма остатков 0+1+2=3,что кратно 3,то есть сумма исходных чисел кратны 3,и больше 3.
Дублирую для Вас решение - я его только что кому-то другому написал, но вот отыскал уже:
задача - найти радиус окружности, описанной вокруг квадрата, то есть дна бассейна.
нетрудно заметить, что радиус этот совпадает с половиной диагонали того самого квадрата. Вот ее и будем искать.
диагонали квадрата равны и пересекаются под прямым углом, а значит - искомая половина диагонали - катет прямоугольного равнобедренного треугольника, гипотенузой которого является сторона квадрата. Зная гипотенузу по теореме Пифагора легко подсчитаем катет, а значит, найдем сторону квадрата - и катет (он же радиус, он же высота подвешенной лампочки) у нас в кармане!
приступим:
сторона квадрата - корень из площади = корень из 32 = 4 корня из двух
осталось посчитать упоминавшийся ранее катет, он же искомый радиус: 2r в квадрате = квадрат гипотенузы = 32 r = корень из 32 деленный на 2 = два корня из двух
это все! Лампа висит на высоте 2 корня из двух [метров]
А) (4^2)^1/2 + (3^3)^1/3 + (3^4)^3/4 - (2^3)^1 цел. 1/4= 4 + 3 + 27 - 16 = 18 (^-степень, поясняю, ты просто представляешь числа в других степенях, например 16 это 4^2, да еще в степени 1/2, при возведении степени в степень показатели перемножаются, то есть 2*1/2=1, число в первой степени есть само число, ну и так далее, надеюсь понятно, я не умею объяснять))) б) не могу сообразить в) 125х^0 = 1 (любое число в нулевой степени 1), а 1^2/3 = 1,(единица в любой степени 1), не уверена, но вполне логично)) г) знаменатель не трогаем, работаем с числителем, при умножении показатели степеней складываются, то есть х^1/4*x^1/2= x^3/4 (1/4+1/2=3/4), теперь x^3/4 разделить на х^3/4=1 д) (5^3)1/3*((11^2)^1/2 + (2^7)^5/7 - (3^4)^6/4) = 5*(11+32-729)= - 3430 (аналогично тому, что делали в а, представляем числа другими числами в степенях, степени перемножаем и т.д.) е) тоже не соображу ж) (81а^8)^3/4= (81a)^6 (при возведении степени в степени показатели перемножаем: 8*3/4= 2*3=6) з) числитель: х^2/5*x^1/10=x^5/10= х^0.5 (при умножении показатели складываем, 2/5+1/10=5/10), в числителе у нас х^0.5 а в знаменателе (x^0.5)^3, сокращаем все на х^0.5 и получаем 1/(x^0.5)^2= 1/x^1=1/x
Рассмотрим остатки при делении на три.Если мы нашли простые числа,которые дают одинаковые остатки на 3,то задача решена,поскольку,если у них остатки соответственно равны r,r,r,то тогда сумма остатков равно 3r,что кратно 3,то есть дают нулевой остаток при делении на три ,и сумма любых 3 простых чисел больше трех,так наименьшие простые числа это 2 3 5,сумма которых точно больше 3.
То есть кратны 3,и их сумма имеет вид 3k ,где k>1,k-целое.
Теперь предположим,что мы не нашли таких чисел. Тогда заметим,что найдется тогда три числа ,дающие разные остатки при делении на 3,так как если это не так,то каждого вида остатков не более двух(если их хотя бы 3,то это первый случай),а всего видов не более двух(при делении на три есть три различные остатки 0,1,2,одного у нас нет),то есть чисел не более чем 2*2=4,а у нас их 5.
Тогда мы нашли числа,дающие различные остатки при делении на 3.То есть это 0 1 и 2. Но сумма остатков 0+1+2=3,что кратно 3,то есть сумма исходных чисел кратны 3,и больше 3.
Противоречие. Значит,такого набора не существует.