В таблице.
Объяснение:
Постройте график уравнения.
1) - 9х+3у=13.
2) 0х-9у=-3.
3) 3х-0у= -2
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
- 9х+3у=13 0х-9у= -3 3х-0у= -2
3у=13+9х -9у= -3 3х= -2
у=(13+9х)/3 у=1/3 х= -2/3
Таблица:
х -1 0 1
у 1,3 4,3 7,3
График функции у=1/3 прямая, параллельна оси Ох и проходит через точку у=1/3 (≈0,3);
График функции х= -2/3 прямая, параллельна оси Оу и проходит через точку х= -2/3 (≈ -0,7)
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
ответ: во вложении Объяснение: