М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
konovalov201
konovalov201
19.03.2020 11:24 •  Алгебра

1.9. Докажите тождество:

2) 99x³ - (3x-4)(9х2 +12x+16)
- (3x-4)(9х2 +12x +16) - (3 + 4x)(9 -12x +16x) = 37​

👇
Ответ:

91x^{3} -27x^{3} -36x^{2} -48x+36x^{2} +48x+64-27+36x-48x^{2} -36x+48x^{2} -64x^{3}=37\\

приводим общие знаменатели

64-27=37\\37=37

4,6(3 оценок)
Открыть все ответы
Ответ:
miha115
miha115
19.03.2020
Для начала, можно посмотреть несколько последовательных степеней двойки:
1       2
2      4
3      8
4     16
5    32
6    64
7   128
8  256
9   512
Как видим, последняя цифра меняется так:  2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4.    Получим 503 и остаток 3.

Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8

Соответственно, последняя цифра числа 2^2015  будет восемь.
4,4(19 оценок)
Ответ:
sloppysec
sloppysec
19.03.2020
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 1)^2*(x + 2) = 0 
(x - 1)^2 = 0 
x - 1 = 0 
x = 1 

x + 2 = 0 
x = - 2

2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1 
x₁ = 1 
x₂= - 1;

x - 3 = 0 
x₃ = 3 

3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0 
x = 4 

x - 3 = 0
x = 3 

4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0

x^2 = 4 
x₁ = 2;
x₂ = - 2

x + 1 = 0 
x₃ = - 1 
4,7(22 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ