М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Galia8
Galia8
23.11.2021 07:54 •  Алгебра

Разложите на множители:
1)х^2 у^2-ху-х^2+х
2)а^3+8-а^2-2а
3)b^6-4b^4+12b^2-9
4)m^3+27n^3+m^2+6mn+9n^2
5)a^2+2ab+b^2-c^2+4cd-4d^2
6)a^2-b^2+4a+4

👇
Открыть все ответы
Ответ:
vlgonotrada
vlgonotrada
23.11.2021
Разберем по частям, начнем с простого:
Квадратный корень из 81 естественно равен 9: √81=9;
Далее разберемся с первым числом, имеем:
9^{\frac{3}{2}}
Знаменатель в степени числа всегда показывает какой у нас корень, в данном случае - корень квадратный, а квадратный корень, как известно записывается так:
\sqrt{x}=x^{\frac{1}{2}}
Следовательно, у нас идет квадратный корень из девяти в кубе:
\sqrt{9^3}=\sqrt{729}
Квадратный корень из 729 извлекается, это 27.
Теперь второе число:
В знаменателе степени стоит 3, то есть, корень кубический. Выглядит так:
27^{\frac{2}{3}}=^3\sqrt{27^2}=^3\sqrt{729};
То бишь, если квадратный корень из 729 равен 27, то теперь из 27 находим квадратный корень, чтобы найти кубический корень из 729. Получаем 9.
В итоге, складывая:
27+9+9=45.
4,5(57 оценок)
Ответ:
Пакмен007
Пакмен007
23.11.2021

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ