В решении.
Объяснение:
Выберите систему уравнений, соответствующую условию задачи: расстояние от поселка до города 62 км;
велосипедист и мотоциклист, выехав одновременно навстречу друг другу, встречаются через час.
Найдите скорость велосипедиста и мотоциклиста, если скорость велосипедиста на 28 км/ч меньше, чем скорость мотоциклиста.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
у - скорость мотоциклиста.
1) х + у = 62
у - х = 28
х = 62 - у
у - 62 + у = 28
2у = 90
у = 45 (км/час) - скорость мотоциклиста.
45 - 28 = 17 (км/час) - скорость велосипедиста.
Второй вариант:
х - скорость мотоциклиста.
у - скорость велосипедиста.
4) х + у = 62
х - у = 28
х = 62 - у
62 - у - у = 28
-2у = 28 - 62
-2у = -34
у = -34/-2
у = 17 (км/час) - скорость велосипедиста.
х = 62 - 17
х = 45 (км/час) - скорость мотоциклиста.
Можно использовать две системы на выбор, в зависимости от обозначений. ответ не изменится.
1) х+у=62
у-х=28
2) х+у=28
х-у=62
3) х+у=28
у-х=62
4) х+у=62
х-у=28
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.