Пусть время, за которое встретятся поезда – х часов, тогда 1-ый поезд за это время проедет 56х, а 2-ой 64х. Всего они проедут 56х + 64х, что по условию задачи будет 360 км.
Теперь составим и решим уравнение:
56х + 64х = 360 х (56 + 64) = 360 х = 360 / 120 х = 3 (ч) проедут поезда до своей встречи.
1) 4 + 3 = 7 (ч) – сколько в пути был 1-ый поезд.
ответ: 1-ый поезд был в пути 7 часов, а 2-ой – 3 часа.
Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится число 10Y + X и отношение полученного числа к N равно 3,4, т.е. 10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY 10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4 10Y + X = 34X + 3,4Y 10Y - 3,4Y= 34X - X 6,6Y = 33X 6,6Y = 33X X = 0,2Y подставим Х в первое уравнение 10* 0,2Y + Y = 3Y*0,2Y 2Y + Y = 0,6Y^2 0,6Y^2 - 3Y = 0 Y( 0,6Y - 3) = 0 Y = 0 или 0,6Y - 3 =0 0,6Y = 3 Y = 5
если Y = 0 то Х =0 ( не подходит) если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
Объяснение:
a^10 : a^3= a^7