Получаем уравнение 3N+4M=50×10=5000 M=(5000-3N)/4=1250-3N/4 Чтобы М было целым, N должно делиться на 4. |M-N|=M-N, если M>N |M-N|=N-M, если MНам нужно найти М и N, которые как можно ближе друг к другу (модуль их разности должен быть минимален). Если N=800, то М=1250-3*200=1250-600=650 Если N=600, то М=1250-3*150=1250-450=800 Значит, 600Если N=700, то М=1250-3*175=1250-525=725 Почти угадал, продолжим дальше. Если N=720, то М=1250-3*180=1250-540=710 Если N=716, то М=1250-3*179=1250-537=713 |M-N|=716-713=3 Если N=712, то М=1250-3*178=1250-534=716 |M-N|=716-712=4 Очевидно, минимум равен 3.
Получаем уравнение 3N+4M=50×10=5000 M=(5000-3N)/4=1250-3N/4 Чтобы М было целым, N должно делиться на 4. |M-N|=M-N, если M>N |M-N|=N-M, если MНам нужно найти М и N, которые как можно ближе друг к другу (модуль их разности должен быть минимален). Если N=800, то М=1250-3*200=1250-600=650 Если N=600, то М=1250-3*150=1250-450=800 Значит, 600Если N=700, то М=1250-3*175=1250-525=725 Почти угадал, продолжим дальше. Если N=720, то М=1250-3*180=1250-540=710 Если N=716, то М=1250-3*179=1250-537=713 |M-N|=716-713=3 Если N=712, то М=1250-3*178=1250-534=716 |M-N|=716-712=4 Очевидно, минимум равен 3.
(-1,5;2,5) (2;-1) (-2;1) (1,5;-2,5)
Объяснение:
{x²+2xy+y²=1 {(x+y)²=1 {x+y=-1 {x+y=1
{x²-xy=6 ⇔ {x²-xy=6 ⇔ {x²-xy=6 ⇔ {x²-xy=6
{y=-1-x { y=1-x
{x²-x(-1-x)=6 {x²-x(1-x)=6
x²+x+x²-6=0 x²-x+x²-6=0
2x²+x-6=0 2x²-x-6=0
D=1²-4·2·(-6)=49 D=(-1)²-4·2·(-6)=49
x₁=(-1-7)/4=-2 y₁=-1-(-2)=1 x₁=(1-7)/4=-1,5 y₁=1-(-1,5)=2,5
x₂=(-1+7)/4=1,5 y₂=-1-1,5=-2,5 x₂=(1+7)/4=2 y₂=1-2=-1