М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastamalysheva
nastamalysheva
27.01.2022 15:34 •  Алгебра

З одного міста в друге відстань між якими 240 км на годину виїхали одночасно автобус і автомобіль автобус прибув до пункту призначення на одну годину пізніше за автомобіль знайдіть швидкість автомобіля та швидкість автобуса якщо за дві години автобус проїжджає на 40 км більше ніж автомобіль за одну годину а їхні швидкості не перевищує 90 км /год​

👇
Ответ:
Maaaarrr
Maaaarrr
27.01.2022

60  км /год​ швидкість автобуса,80 км/год швидкість автомобіля.

Объяснение:

Приймаємо за х швидкість автобуса,а швидкість автомобіля за у.Тоді

2х-у=40

у=2х-40

Час в дорозі складає у автобуса -240/х, у автомобіля 240/у

240/х-240/у=1

240у-240х=ху

Підставляємо значення у

240(2х-40) -240х=х(2х-40)

480х-9600-240х=2х²-40х

-2х²+280х-9600=0  : -2

х²-140х+4800=0

D = b² - 4ac = (-140)² - 4·1·4800 = 19600 - 19200 = 400

x₁ =   140 - √400/ 2·1  =   140 - 20/ 2  =   120 /2  = 60  км /год​

x₂ =   140 + √400 /2·1  =   140 + 20 /2  =   160 /2  = 80 км /год​ не підходить

х₁=60-швидкість автобуса , 2*60-40=80- швидкість автомобіля

При швидкості автобуса х₂=80 км/год швидкість  автомобіля буде становити 2*80-40=120 км/год, тому це значення не підходить,бо за умовою задачі їхні швидкості не перевищують 90 км /год​.

4,5(100 оценок)
Открыть все ответы
Ответ:
Maks2405
Maks2405
27.01.2022

x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))

x2 = 2*pi - i*im(acos(4))

x3 = re(acos(-3)) + i*im(acos(-3))

x4 = re(acos(4)) + i*im(acos(4))

Объяснение:

x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))

x2 = 2*pi - i*im(acos(4))

x3 = re(acos(-3)) + i*im(acos(-3))

x4 = re(acos(4)) + i*im(acos(4))

x1 = 3.14159265358979 + 1.76274717403909*i

x2 = 6.28318530717959 - 2.06343706889556*i

x3 = 3.14159265358979 - 1.76274717403909*i

x4 = 2.06343706889556*i

сумма

-re(acos(-3)) + 2*pi - i*im(acos(-3)) + 2*pi - i*im(acos(4)) + i*im(acos(-3)) + re(acos(-3)) + i*im(acos(4)) + re(acos(4))

=

4*pi + re(acos(4))

произведение

(((-re(acos(-3)) + 2*pi - i*im(acos(-3)))*(2*pi - i*im(acos(4*(i*im(acos(-3)) + re(acos(-3*(i*im(acos(4)) + re(acos(4)))

=

-(2*pi - i*im(acos(4)))*(i*im(acos(-3)) + re(acos(-3)))*(i*im(acos(4)) + re(acos(4)))*(-2*pi + i*im(acos(-3)) + re(acos(-3)))

4,7(43 оценок)
Ответ:
Любимка97
Любимка97
27.01.2022

1) х ∈ (7/5; ∞)  

2) х ∈ (-1; 0)

3) х ∈ [-0,6; 2]

Объяснение:

1) Находим нули функции:

(5 х−7 ) = 0; х 1 = 7/5;

х^2−4х+5 = 0 - дискриминант отрицательный, значит уравнение не имеет действительных корней, то есть график данной функции с осью х не пересекается, а т.к. ветви параболы направлены вверх, то фунция положительна при любом значении х.

Определим знак (5 х−7) правее точки 7/5; например, возьмём точку х=2, получаем 10-7 = +3, знак + говорит о том, что функция положительна.

Объединяя 2 полученных значения, получаем ответ:

х ∈ (7/5; ∞) .

ответ: х ∈ (7/5; ∞).

2) Находим нули функции, приравнивая каждую скобку 0 и решая уравнения:

выражение в первых скобках даёт 2 корня: х1 = 0, х2 = 3;

выражение во второй скобке даёт один корень: х = -1;

выражение в третьей скобке даёт один корень: х =3.

Наносим на числовую ось все полученные корни:

-1, 0, 3.

Определим знак функции на участке от 0 до 3; пусть х = 1, тогда значение выражения:

(3-9)*(5+5)*(7-21) = (-6)*10*(-14) =+840 - знак + говорит о том, что участок от 0 до 3 нам не подходит;

возьмём точку  правее 3, например, х = 5:

(3*25-45)*(25+5)*(35-21) = 30*30*14= +12600 - знак +, следовательно, значения х свыше 3 также не подходят;

диапазон от -1 до 0: возьмём точку -0,5:

(3*0,25+4,5)*(-2,5+5)*(-3,5-21) = 5,25* 2,5* (-24,5) = - 321,5625 - знак "-", следовательно, диапазон значений от -1 до 0 нас устраивает, так как на этом участке заданная функция отрицательна;

проверим последний участок (левее точки -1),  возьмём точку х = -5:

(3*25+45)*(-25+5)*(-35-21) = 120*(-20)*(-56) = +134400 - знак +, следовательно, значения х меньше (-1) нас не устраивают.

ответ: х ∈ (-1; 0).

3)  ( x−2 )(5 x+3)2≤0

Раскроем скобки:

10х² -14х -12=0

Находим нули функции:

х1= 2,

х2= - 3/5 = - 0,6

Ветви параболы направлены вверх, следовательно, решением будут все значения от -0,6 до 2 включительно, т.к., согласно условию, "и равно".

Тем не менее, проверим знак функции на участке от -0,6 до 2.

Пусть х = 0, тогда:

( x−2 )(5 x+3)2 = (-2)* 3* 2 = -12, - знак "-" говорит о том, что функция на этом участке отрицательна, что подтверждает правильность сделанного нами вывода.

ответ: х ∈ [-0,6; 2].

4,7(91 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ