Числа вида 4n, 4n+1 и 4n+3 представимы в виде разности квадратов: 4n=(n+1)²-(n-1)²; 4n+1=(2n+1)²-(2n)²; 4n+3=(2n+2)²-(2n+1)².
Числа вида 4n+2 не представимы в виде разности квадратов, т.к. иначе 4n+2=a²-b²=(a-b)(a+b). Если а и b имеют разную четность, то а-b и a+b - нечетные числа, и значит (a-b)(a+b) нечетно. Если а и b имеют одинаковую четность, то а-b и a+b - оба четные, и значит (a-b)(a+b) делится на 4. Но число 4n+2 - не является нечетным и не делится на 4. Значит, оно не может быть равно a²-b² ни при каких а и b.
Таким образом, все натуральные числа не представимые в виде разности квадратов имеют вид 4n+2, где n=0,1,2, Так как первое такое число (равное 2) будет при n=0, то трехтысячное число будет при n=2999, т.е. равно 4*2999+2=11998.
Данное выражение должно делиться на 10^7 = 2^7 * 5^7, то есть кратным 2^7 и 5^7 a должно быть чётным Пусть а=2n a(a+8)(a+16)(a+24)(a+32)=2n(2n+8)(2n+16)(2n+24)(2n+32)= =2^5(n+4)(n+8)(n+12)(n+16) > не кратно 2^7, a=2n не подходит. Пусть а=4n 4n(4n+8)(4n+16)(4n+24)(4n+32) = 2^10 *(n+2)(n+4)(n+6)(n+8) - кратно 2^7
произведение (n+2)(n+4)(n+6)(n+8) должно быть кратно 5^7, все сомножители дают разные остатки от деления на 5, поэтому среди них только один должен делиться на 5^7. наименьшее n - в множителе (n+8) ---> n=5^7 -8=78125-8=78117
9a-b\2a-6b корень из a+b.
Сокращение дроби: 6b^2+корень из a*(b-9a)-2ab\6b-2a.