Задание. Прогулочный катер вышел из пункта A вниз по течению реки, которая впадает в озеро, дошёл до середины озера и отправился обратно. Найдите длину всего пути (в км), если вся прогулка заняла 3 часа, собственная скорость катера равна 24км/ч, скорость течения реки - 6км/ч, и на озере катер находился 20 минут. Решение: Пусть длина всего пути равен х км, а путь по реке - км. Скорость по течению равна (24+6=30)км/ч, а против течения - (24-6=18) км/ч. Так как катер дошёл до середины и обратно вернулся, то на весь путь он затратил что составляет 3 часа - 20 мин = 3 ч - 20/60 ч = 8/3.
1) Функция убывает там, где производная отрицательна y ' = 6x^2 - 18x - 24 = 6(x^2 - 3x - 4) = 6(x + 1)(x - 4) < 0 x ∈ (-1; 4)
2) По теореме косинусов AB = 10
3) Если пар-пед описан около цилиндра, то у него в основании квадрат со стороной, равной диаметру цилиндра a = 2R = 8. Высота равна высоте цилиндра H = 5. V = a^2*H = 8*8*5 = 320 куб.см.
4) Область определения логарифма x^2 - 14x > 0 x(x - 14) > 0 x ∈ (-oo; 0) U (14; +oo) Основание логарифма 0 < 1/2 < 1, поэтому функция убывает. x^2 - 14x - 32 <= 0 (x + 2)(x - 16) <= 0 x ∈ [-2; 16] С учетом области определения x ∈ [-2; 0) U (14; 16]
5) 1 уравнение возводим в квадрат Подставляем 2 уравнение в 1 уравнение y = 3x; подставляем в 1 уравнение Умножаем все на 3x 3x^2 - 2x - 1 = 0 (x - 1)(3x + 1) = 0 x1 = 1; y1 = 3 x2 = -1/3; y2 = -1
ответ:b)13,36; 21,86
c)11,08; 10,58
Объяснение: