Даны координаты вершин пирамиды:
А1 (-10; 6; 6), А2 (-2; 8; 2), А3 (5; -7; 4), А4 (-4; 10; 9).
Найти:
1) угол между ребрами А1А2 и А1А4.
Находим векторы А1А2 и А1А4.
А1А2 = (-2-(-10); 8-6; 2-6) = (8; 2; -4), модуль равен √(64+4+16) = √84 = 2√21.
А1А4 = (-4-(-10); 10-6; 9-6) = (6; 4; 3), модуль равен √(36+16+9) = √61.
Находим косинус угла (А1А2_А1А4):
cos (А1А2_А1А4) = (8*6+2*4+(-4)*3)/( 2√21*√61) = 44/(2√1281) = 22√1281/1281.
Угол (А1А2_А1А4) = arccos(22√1281/1281) = arccos 0,614679 = 0,90882 радиан или 52,0714 градуса.
2) уравнение прямой А1А2.
По точке А1 (-10; 6; 6) и вектору А1А2(8; 2; -4) составляем уравнение:
(x + 10)/8 = (y – 6)/2 = (z – 6)/(-4).
Объяснение:
Так, ну смотри, я решаю так, как нас обучали, а обучали через функцию
х²+8х-9<=0
y=x²+8x-9
Графиком функции является парабола, ветви вверх, так как коэффициент перед х² =1
D=8²-4×1×(-9)=64+36=100
X12=-8+-10/2
X1=1; X2=-6
(Далее график(он должен быть схематический) начертишь с фото)
ответ: Х€(-бесконечность;6]
Х€[1;+бесконечность)
Б) 4х²=>6х
4х²-6х=>0
у=4х²-6х
Графиком функции является парабола, ветви вверх, так как коэффициент перед х² равен 4
4х²-6х>=0
2х(2х-3)>=0
( двойка перед х перед скобкой на строчке выше уничтожается)
2х-3>=0 или х=0
2х>=3
Х=3/2
Х=1,5
(Далее график)
ответ: (-бесконечности; 0]
[1,5; +бесконечности)
Где замулеваны толстые части графика - области определения промежутков
a[1]=3.2
a[2]=2.7
d=a[2]-a[1]
d=2.7-3.2=-0.5
a[n]=a[1]+(n-1)*d
a[n]=3.2-0.5(n-1)=3.2-0.5n+0.5=3.7-0.5n
a[n]>0
3.7-0.5n>0
3.7>0.5n
7.4>n
n=7
a[7]=a[1]+(7-1)*d=a[1]+6d
a[7]=3.2+6*(-0.5)=0.2
S[n]=(a[1]+a[n])/2*n
S[7]=(3.2-0.2)/2*7=10.5