М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lordczar95
lordczar95
14.10.2021 23:26 •  Алгебра

3х²-6х+3=0;
х³-100х=0;
(3х-2)²-(х+7)²=0
Это всё
Алгебра 7 класс​

👇
Ответ:
Alinasia
Alinasia
14.10.2021

1) 3х²-6х+3=0

    х²-2х+1=0

   (х-1)²=0

    х-1=0

ответ: х1=1; х2=1

2) х³-100х=0

  х(х²-100)=0

  х1=0

  (х-10)(х+10)=0

  х2=10; х3=-10

ответ: 0; -10; 10.

3) (3х-2)²-(х+7)²=0

  (3х-2+х+7)(3х-2-х-7)=0

  (4х+5)(2х-9)=0

  4х+5=0; х1=-5/4=-1 1/4=-1,25

  2х=9; х2=4,5

ответ: 4,5;   -1,25.

4,6(47 оценок)
Открыть все ответы
Ответ:

как найти точки пересечения графика функции с осями координат?

с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

примеры.

1) найти точки пересечения графика линейной функции y=kx+b с осями координат.

решение:

в точке пересечения графика функции с осью ox y=0:

kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

в точке пересечения с осью oy x=0:

y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).

y=2∙0-10=-10. с oy график пересекается в точке (0; -10).

2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

решение:

в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.

в зависимости от дискриминанта, парабола   пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.

в точке пересечения графика с осью oy x=0.

y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

4,5(69 оценок)
Ответ:
merobox13
merobox13
14.10.2021

За ознакою подільності на 5. Число ділиться на 5, якщо його остання цифра 5 або 0.

1) Фіксуємо цифру 0 на останньому місці.

На першому місці можна використати 5 цифр, на другому - 4 цифри, оскільки одна цифра вже використана і на третьому місці - 3 цифри. За правилом множення 5 * 4 * 3 * 1 = 60

2) Аналогічно, зафіксувавши на останнє місце цифру 5, маємо що на першому місці можна використати 4 цифри, так як на першому місці 0 не ставиться, на другому місці - 4 цифри (враховуючи цифр 0 і одна цифра використана) і на третьому місці - 3 цифри. За правилом множення 4*4*3 = 48

Сумарна кількість чисел : 60 + 48 = 108

Відповідь: 108

4,8(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ