Здесь все уравнения будут решаться Дискриминантом. 1) -x^2+12x-35=0 (Перед квадратом минус,поменяв его на плюс все знаки в уравнении поменяются на противоположные) x^2-12x+ 35=0 D=b^2-4ac= (-12)^2-4*1*35= 144-140=4 (4 в корне =2) x1= -b+- /2a= 12+2/2=14/2=7 x2= 12-2/2=5 Дальше все так же как и сверху, просто пишу решения 2) y^2+16y+21=0 D=16^2-4*1*21= 256-84= 172 (Корень не извлекается, так и остается) y1= -16 - /2 y2= -16 - /2
См. рисунок в приложении. Строим границы указанных областей. у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3) Парабола разбивает плоскость хОу на две части внутреннюю и внешнюю. Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство 0≥-1 - верно. Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости. Область определяемая неравенством х+у≥2 расположена ниже прямой. Координаты точки (0;0) удовлетворяют неравенству х+у≤2: 0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1 О т в е т. р=-1
Объяснение: