в первом ответ 4 потому что бывает цинковая кислота h2zno2 алюминевая кислота, серная, и из цезия тоже
во втором 3 примере написано тоже правильно т.к. это правило и например fr(франций) является атомом с самым большим радиусом а he(гелий) наоборот
3) h2so4 состоит из неметаллов а зн.имеет ковалентную связь а полярная потому что разные атомы
4)nano3(формула нитрата натрия) значит однозначно не 3-е
при диссоциации происходит разложение молекулы на ион(na)(металл чаще всего)
и катион(no3)
надеюсь объяснил понятно
найдем одз. под корнем может находиться только неотрицательное значение, значит 5-х> =0, откуда х< =5. корень может принимать только неотрицательные значения, значит 5-х^2> =0, откуда х^2< =5, откуда |х|< =√5, откуда -√5< =х< =√5.
теперь решение:
вoзведем в квадрат:
(5-x^2)^2=5-x
25-10x^2+x^4=5-x
x^4-10x^2+x+20=0
(x^2-x-4)(x^2+x-5)=0
1) x^2-x-4=0
d=17
x(1)=(1+√17)/2> (1+√16)/2=(1+4)/2=5/2=√5*√5/2> √5*√4/2=√5. значит этот корень не подходит.
x(2)=(1-√17)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
2) x^2+x-5=0
d=21
x(1)=(-1+√21)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
x(2)=(-1-√21)/2< (-1-√16)/2=-5/2=-√5*√5/2< -√5*√4/2=-√5. значит этот корень не подходит.
ответ: х(1)=(1-√17)/2, х(2)=(-1+√21)/2.
ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
прибавим
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{x=11y-10
{43y=86
{x=11y-10
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение: