Двое рабочих, работая вместе, выполняют некоторую работу за 6 дней. Первый из них, работая отдельно, может выполнить всю работу на 5 дней быстрее, чем второй рабочий. За сколько дней каждый из них, работая отдельно, может выполнить всю работу
Два натуральных числа (n) и (2017-n); очевидно, что это не двузначные числа: 99+99 < 2017 ... и не трехзначные: 2*999 < 2017 2017:2 = 1008.5 (одно из них точно больше 1000) если обозначить меньшее из этих чисел (n), то большее можно записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра например, (23) и (234 = 10*23 + 4); получим: 2017 - n = 10*n + c с = 2017 - 11n и осталось решить 10 уравнений: 0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N 1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N 2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N 3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N 4 = 2017 - 11n ---> n = 2013:11 = 183 5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N 6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N 7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N 8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N 9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N т.е. таких чисел только два... 183 и 1834
Два натуральных числа (n) и (2017-n); очевидно, что это не двузначные числа: 99+99 < 2017 ... и не трехзначные: 2*999 < 2017 2017:2 = 1008.5 (одно из них точно больше 1000) если обозначить меньшее из этих чисел (n), то большее можно записать как (10*n + c), где с∈{0;1;2;3;4;5;6;7;8;9} -это цифра например, (23) и (234 = 10*23 + 4); получим: 2017 - n = 10*n + c с = 2017 - 11n и осталось решить 10 уравнений: 0 = 2017 - 11n ---> n ≠ 2017:11 ∉ N 1 = 2017 - 11n ---> n ≠ 2016:11 ∉ N 2 = 2017 - 11n ---> n ≠ 2015:11 ∉ N 3 = 2017 - 11n ---> n ≠ 2014:11 ∉ N 4 = 2017 - 11n ---> n = 2013:11 = 183 5 = 2017 - 11n ---> n ≠ 2012:11 ∉ N 6 = 2017 - 11n ---> n ≠ 2011:11 ∉ N 7 = 2017 - 11n ---> n ≠ 2010:11 ∉ N 8 = 2017 - 11n ---> n ≠ 2009:11 ∉ N 9 = 2017 - 11n ---> n ≠ 2008:11 ∉ N т.е. таких чисел только два... 183 и 1834
15 дней и 10 дней
Объяснение:
Пусть вся работа 1
Путь одному рабочему на всю работу нужно х дней, тогда второму (х-5) дней.
Т.к. первый делает всю работу за х дней, то за 1 день он делает 1/х часть работы
Т.к. второй рабочий делает всю работу за (х-5) дней , то за 1 день он делает 1/(х-5) часть работы
Работали рабочие вместе 6 дней, значит они сделали вместе 6/х+6/(х-5), что по условию задачи является всей работой, получим уравнение
6/х+6/(х-5)=1
6*(х-5)+6х=х(х-5)
6х-30+6х=х²-5х
х²-17х+30=0
D=(-17)²-4*1*30=169=(13)²
х₁=(17+13)/2=15, х₂=(17-13)/2=2(посторонний корень, не удовлетворет условию задачи)
Т.о. первый рабочий может сделать всю работу сам за 15 дней, второй за 15-5=10 дней