Начать следует с раскрытия скобок. Скобки (6x+7)(6x-7) можно раскрыть, используя формулу сокращённого умножения (a-b)(a+b)=a^2-b^2. Используем её в уравнении:
(6х+7)(6х-7)+12х=36х^2+12х-49
36x^2-49+12x=36x^2+12x-49
Теперь перенесём все переменные x в левую часть уравнения, а все числа - в правую. Получим:
36x^2+12x-36x^2-12x=-49+49
Приведём подобные слагаемые в обеих частях уравнения, попутно взаимоуничтожив все противоположные слагаемые:
36x^2 и -36x^2 взаимоуничтожились
12x и -12 x тоже взаимоуничтожились
-49 и 49 тоже взаимоуничтожились
Что же мы получаем? В обеих частях уравнения все слагаемые уничтожены, мы получили это:
0=0
Полученное нами равенство оказалось верным.
Это значит, что какое бы мы x ни выбрали, эта переменная всегда будет пропадать и равенство будет верным. Из этого следует, что у данного уравнения бесконечное количество решений.
ответ: x - любое число
Нам нужно найти корни квадратного уравнения 9x2 - 7x - 2 = 0. И начнем мы традиционно с вычисления дискриминанта уравнения.
Для этого мы вспомним формулу:
D = b2 - 4ac, а так же выпишем коэффициенты, которые мы должны подставить в формулу:
a = 9; b = -7; c = -2.
Итак, подставляем значения и вычисляем:
D = (-7)2 - 4 * 9 * (-2) = 49 + 72 = 121;
Мы получили положительный дискриминант и можем говорить о том, что уравнение имеет два корня:
x1 = (7 + √121)/2 * 9 = (7 + 11)/18 = 18/18 = 1;
x2 = (7 - √121)/2 * 9 = (7 - 11)/18 = -4/18 = -2/9.
А).
Через
секунды мяч будет на следующей высоте:
Б).
Здесь нужно найти такое
, при котором выполняется
.
Составим уравнение и решим его:
Следовательно, мяч побывает на высоте
метров ровно
раза: через
и через
секунды после своего отправления.
В).
Раз коэффициент при
отрицательный (он равен
), то ветви параболы направлены вниз и максимальное значение функции
будет достигаться в вершине параболы, которая имеет абсциссу
. Теперь найдем само
в этой точке (ординату):
Делаем вывод, что наибольшая высота, которую достиг мяч - это
метра.