Аксио́ма (др.-греч. «утверждение, положение»), или постула́т, — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств.
Что такое |x| ? |x|=x при x≥0 и |x|=-x при x<0 поэтому разобьем систему на 2. 1. x<0 y=-x+4 y=-5/(x-2) Решаем -x+4=-5/(x-2) x≠2 (x-2)(-x+4)=-5 -x²+4x+2x-8+5=0 -x²+6x-3=0 x²-6x+3=0 D=6²-4*3=36+12=24 √D=2√6 x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0 x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0 x=3-2√3 y=-3+2√4+4=1+2√3 2. x≥0 y=x+4 y=-5/(x-2) Решаем x+4=-5/(x-2) x≠2 (x-2)(x+4)=-5 x²+4x-2x-8+5=0 x²+2x-3=0 D=2²+4*3=16 √D=4 x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0 x₂=(-2+4)/2=1 x=1 y=1+4=5 ответ: x=1 y=5
Аксио́ма (др.-греч. «утверждение, положение»), или постула́т, — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств.
А інше я не знаю