М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lowrentij
lowrentij
10.01.2021 00:18 •  Алгебра

Докажите 4cos25-3sin65/sin115=1

👇
Ответ:
Adriet
Adriet
10.01.2021

\frac{4cos25-3sin65}{sin115}=\frac{4cos(\frac{\pi }{2}-65)-3sin65 }{sin(\pi-65)}= \frac{4sin65-3sin65}{sin65}=\frac{sin65}{sin65}=1

4,5(48 оценок)
Открыть все ответы
Ответ:
карина2148
карина2148
10.01.2021
1)
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1     x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41   наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40  -   наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8

F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15

выбираем из них наибольшее и наименьшее

2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4     x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку

F(0)=10   - наименьшее
F(3)=3³+9·3²-24·3+10=46   - наибольшее
4,6(80 оценок)
Ответ:
Dgj8
Dgj8
10.01.2021
Log₂(x²-7x+6)≥1+log₂7 log₂(x²-7x+6)≥log₂2+log₂7 log₂(x²-7x+6)≥log₂(2*7) log₂(x²-7x+6)≥log₂14 одз: x²-7x+6> 0 d=(-7)²-4*6=49-24=25 x=(7-5)/2=1    x=(7+5)/2=6               +                          -                        + x∈(-∞; 1)∪(6; +∞) x²-7x+6≥14 x²-7x+6-14≥0 x²-7x-8≥0 d=(-7)²-4*(-8)=49+32=81 x=(7-9)/2=-1    x=(7+9)/2=8             +                            -                          + x∈(-∞; -1]∪[8; +∞) найденные интервалы входят в область допустимых значений. ответ: x∈(-∞; -1]∪[8; +∞)
4,6(46 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ