|2x+4,4|-3=|2x+1,4|
нули модулей x = -2.2 x = -0.7
раскрытие модулей
|2x+4,4| |2x+1,4|
x < -2.2 -(2x + 4.4) -(2x + 1.4)
-2.2 <=x <= -0.7 (2x + 4.4) -(2x + 1.4)
x > -0.7 (2x + 4.4) (2x + 1.4)
1. x < -2.2
-(2x + 4.4) - 3 = -(2x + 1.4)
-2x - 4.4 - 3 = -2x - 1.4
-7,4 = -1.4
x ∈ ∅
2. -2.2 <=x < -0.7
(2x + 4.4) - 3 = -(2x + 1.4)
2x + 1.4 = -2x - 1.4
4x = -2.8
x = -0.7
3. x > -0.7
(2x + 4.4) - 3 = (2x + 1.4)
2x + 1.4 = 2x + 1.4
0 = 0
x > -0.7
ответ x ∈ [-0.7, +∞)
Объяснение При пересечении параллельных прямых секущей образуется 8 углов двух величин:
соответственные углы
∠1 = ∠5
∠3 = ∠7,
а так как ∠1 = ∠3 как вертикальные, то
∠1 = ∠5 = ∠3 = ∠7 = х
и соответственные углы
∠2 = ∠6
∠4 = ∠8,
а так как ∠2 = ∠4, как вертикальные, то
∠2 = ∠6 = ∠4 = ∠8 = у
Сумма односторонних углов равна 180°, например
∠3 + ∠6 = 180°
Т. е. х + у = 180°.
Углы, о которых идет речь в задаче, не равны, значит их сумма 180°:
х - меньший угол, у = 5х
x + 5x = 180°
6x = 180°
x = 30°
∠1 = ∠5 = ∠3 = ∠7 = 30°
у = 180° - 30° = 150°
∠2 = ∠6 = ∠4 = ∠8= 150°