Пусть x км/ч - скорость велосипедиста.
Тогда (x+30) км/xч - скорость мотоциклиста.
Каждый проехал 15 км, т.к. встретились на середине.
Т.к. мотоциклист выехал на 40 минут позже, значит, велосипедист ехал на 40 минут дольше мотоциклиста. 40 минут = 2/3 часа. Отсюда уравнение:
15/x-15/(x+30)=2/3
450/(x²+30x)=2/3
3*450=2*(x²+30x)
1350=2x₂+60x
2x²+60x-1350=0 |:2
x²+30x-675=0
D=900+2700=3600
x₁=15
x₂=-45 <- посторонний корень
Скорость велосипедиста - 15 км/ч. Значит, скорость мотоциклиста - 45 км/ч.
2 Cos² 2x - Cos x -1 = 0
Решаем как квадратное
a) Cos 2x = 1 б) Cos 2x = -1/2
2x = 2πk, где к ∈Z 2x = +- arc Cos (-1/2) +2π n , где n∈Z
х = π к, где к∈Z 2x = +-2π/3 + 2πn, где n∈Z
x = +- π/3 + πn,где n∈ Z
Получили 2 группы корней. Будем искать корни, которые попадают в указанный промежуток
Разберёмся с указанным отрезком на числовой прямой
-π -π/2 0 π/3
а) х = πк,где к ∈Z
k = -1
x = -π ( попадает в указанный отрезок)
к = 0
х = 0 ( попадает в указанный отрезок)
к = 1
к = 2
х = 2π( не попадает в указанный отрезок)
б) х = +- π/3 +πn,где n ∈Z
n = 0
x = +-π/3 (попадает в указанный отрезок)
n = 1
х = π/3 + π( не попадает)
х= - π/3 +π ( не попадает)
n = -1
x = π/3 - π = -2π/3( попадает)
х = -π/3 -π(не попадает)