М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ботаник041
ботаник041
29.08.2022 12:01 •  Алгебра

Знайдіть 1-й член і різницю арифметичної прогресії (an), якщо a2+a15=74 і a5+a17=94

👇
Ответ:
mtmrfz43
mtmrfz43
29.08.2022

1)В дробях сiмдесят чотири сiмнадцятих

2)В дробях сорок семь одинадцятих

4,6(8 оценок)
Открыть все ответы
Ответ:
lolkekpfff
lolkekpfff
29.08.2022
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.
4,5(96 оценок)
Ответ:
stepnikitka
stepnikitka
29.08.2022
Найдите целые отрицательные  решения неравенств:
1) x^4-4x^2\ \textless \ 0
Рассмотрим функцию f(x)=x^4-4x^2
Её область определения: D(f)=(-\infty;+\infty)

Приравниваем функцию к нулю:
f(x)=0;\,\,\,\,\, x^4-4x^2=0\\ x^2(x^2-4)=0
Произведение равно нулю, если один из множителей равен нулю
\left[\begin{array}{ccc}x^2=0\\x^2-4=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2_,_3=\pm 2\end{array}\right

На интервале найдем решение неравенства

_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток - x \in (-2;0)\cup(0;2)

Целое отрицательное число из промежутка: -1

ответ: -1.

2) 27-3x^2 \geq 0|\cdot(-1)
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный

-27+3x^2 \leq 0\\ 3x^2 \leq 27|:3\\ x^2 \leq 9\\ \\ |x| \leq 3\\ \\ -3 \leq x \leq 3

Целые отрицательные числа промежутка: -3; -2; -1.

ответ: -3; -2; -1.

3) \dfrac{x^2-x-2}{x^2} \ \textless \ 0
Рассмотрим функцию
  f(x)= \dfrac{x^2-x-2}{x^2}
Область определения:
 x\ne 0
D(f)=(-\infty;0)\cup(0;+\infty)
Приравниваем функцию к нулю:
f(x)=0;\,\,\,\, \dfrac{x^2-x-2}{x^2} =0
Дробь обращается в 0 тогда, когда числитель равен нулю
x^2-x-2=0
По т. Виета: x_1=-1;\,\,\,\,\, x_2=2

Найдем решение неравенства
  ___+___(-1)___-____(0)____-__(2)____+____
x \in (-1;0)\cup(0;2) - решение неравенства

Целых  отрицательных чисел - НЕТ

ответ: целых отрицательных чисел нет

4) \dfrac{x^2+x}{x^2-3} \leq 0
Рассмотрим функцию
   f(x)= \dfrac{x^2+x}{x^2-3}
Область определения функции:
  x^2-3\ne 0\,\,\,\, \Rightarrow\,\,\,\,\,\, x\ne\pm \sqrt{3}

D(f)=(-\infty;- \sqrt{3} )\cup(- \sqrt{3} ; \sqrt{3} )\cup( \sqrt{3} ;+\infty)

Приравниваем функцию к нулю
  \dfrac{x^2+x}{x^2-3} =0
Дробь обращается в нуль, если числитель равен нулю
x^2+x=0\\ x(x+1)=0\\ \left[\begin{array}{ccc}x=0\\ x+1=0\end{array}\right\Rightarrow \left[\begin{array}{ccc}x_1=0\\ x_2=-1\end{array}\right

Вычислим решение неравенства:
  __+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства: x \in (- \sqrt{3} ;-1]\cup[0;\sqrt{3} )

Целые отрицательные решения : -1

ответ: -1.
4,8(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ