Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.
Пусть А- точка пересечения прямой а и плоскости α , если
прямая а лежит в плоскости β , то А также лежит в плоскости
β , а значит плоскости имеют общую точку , что противоречит
их параллельности , значит а не лежит в плоскости β ,
проведем через прямую а произвольную плоскость ω и пусть
ω ∩ α =b ; ω ∩ β = c ; A∈ a ⇒ А ∈ ω ; A ∈ α ⇒ A ∈ b ⇒ A = a ∩ b
, так как плоскость ω пересекает параллельные плоскости по
параллельным прямым , то b || c, прямые a ; b и с лежат в
одной плоскости и прямая а пересекает прямую b ⇒ a
пересекает также прямую с , пусть а ∩ с = В , В ∈ с ⇒ В ∈ β , В
∈ а и В ∈ β ⇒ В = а ∩ β , то есть прямая а и плоскость β имеют
общую точку и так как а не лежит в плоскости β , то она ее
пересекает ее в точке В