М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
resetmac
resetmac
17.04.2023 22:58 •  Алгебра

Напишите формулу линейной функции y=kx+b график который проходит через 2 точки: (-2;17) и (3;-18)​

👇
Ответ:
Zaika111111111
Zaika111111111
17.04.2023

Отаапроолллддддбббббвет:

Объяснение:


Напишите формулу линейной функции y=kx+b график который проходит через 2 точки: (-2;17) и (3;-18)​
4,4(4 оценок)
Открыть все ответы
Ответ:
MostQweek
MostQweek
17.04.2023
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Ответ:
kate653
kate653
17.04.2023

α∈(0°45°)

1) а) sin 72°=sin(90°-18°)=cos18°;    т.к. по формуле приведения  

sin(90°-α)=cosα

б) cos 71°=cos(90°-19°)=sin19°;

т.к. по формуле приведения  

cos(90°-α)=sinα

2) a) sin 175°=sin (180°-5°)= sin5°;   т.к. по формуле приведения  

sin(180°-α)=sinα

б) cos 155°=cos(180°-25°)=-cos25°;  т.к. по формуле приведения  

cos(180°-α)=-cosα

3) a) sin 285°=sin (270°+15°)=-cos15°;  т.к. по формуле приведения  

sin(270°+α)=-cosα

б) cos 273=cos (270°+3°)=sin3°;  т.к. по формуле приведения  

cos(270°+α)=sinα

4) a) sin (-355°)=-sin355°=-sin(360°-5°)=sin5°; т.к. по формуле приведения  

sin(360°-α)=-sinα, и функция синуса есть нечетная  функция.

б) cos (-451°)=cos451°=cos(360+91°)=cos91°=cos(90°+1°)=-sin1° ;

т.к. по формуле приведения  

cos(90°+α)=-sinα и функция косинуса есть четная  функция.

в) tg65°= tg(90°-35°)=сtg35°;  т.к. по формуле приведения  

tg(90°-α)=ctgα

в) tg 102°= tg(90°+12°)=-сtg12°, т.к. по формуле приведения  

tg(90°+α)=-ctgα

в) tg 250°=tg(270°-20°)=ctg20°;

т.к. по формуле приведения    

tg(170°-α)=ctgα

в) tg (-317°)=-tg (360°-43°)=tg43°, т.к. по формуле приведения  

tg(360°-α)=-tgα, и функция тангенса есть нечетная.

Дополнение. Функция наз. четной, если область ее определения симметрична относительно нуля и у(-х)=у(х); функция наз. нечетной, если область ее определения симметрична относительно нуля и

у(-х)=-у(х);

формулы  приведения позволяют приводить функции тупого угла к функциям острого угла.

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ