Графически мы имеем 2 прямоугольных треугольника с площадями по 150 каждый и гипотенузами по 25. площадь прямоуг. треуг-ка S=ab/2, а квадрат гипотенузы (25) равен сумме квадратов катетов (искомых сторон). тогда имеем систему уравнений: ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0 Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0 Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?) корни ур-я ищем по формуле и получаем два корня уравнения, равные 225 и 400. Это, как мы помним, a^2, извлекая из каждого значения кв. корень получим два значения а: а1=15, а2=20. Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно
Ctq(t-π) = -3/4⇒ctqt = -3/4 (πk , k∈Z период функции y =ctqx). ctqt = -3/4 ,π/2 < t < π . 1) cos(3π/2 -t ) = -sint = -1/√(1+ctq²t) = -1/√ (1+(-3/4)²) = - 4/5. ( учтено, если π/2 < t < π ⇒sint >0 ) . 2) cos(π+t) = -cost = -(-1/√(1+tq²t)) = 1/√(1+tq²t) =1/√ (1+(-4/3)²) =3/5 (снова учтено факт: если π/2 < t < π ⇒cost<0 ) .
* * * можно иначе если совместно решаются эти два пункта * * * cos(π+t) = -cost = -sint *ctqt = (4/5)* = (-4/5)*(-3/4) =3/5 используя найденное значения (- sint ) из предыдущего пункта.
ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0
Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0
Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?)
корни ур-я ищем по формуле
Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно