М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Russia569
Russia569
17.04.2020 12:45 •  Алгебра

(0,3m+4n)(0,09-1,2mn+16n^2)

👇
Ответ:
minakim28mina
minakim28mina
17.04.2020

если вопросы спросите!


(0,3m+4n)(0,09-1,2mn+16n^2)
4,7(45 оценок)
Ответ:
ПакЧимин111
ПакЧимин111
17.04.2020

0,027mn-0,36m2n2+4,8mn2+0,36n+128n2

Объяснение:

я как понимаю, ^-это умножение?

4,5(22 оценок)
Открыть все ответы
Ответ:
Karbobo
Karbobo
17.04.2020

Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)


Решим к примеру x^7=x+6 уравнение в действительных корнях.

Рассмотрим функцию y=x^7. Эта функция является возрастающей на всей числовой прямой.

Также рассмотрим правую часть уравнения: функцию y=x+6. Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).


графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.


Возьмем теперь к примеру уравнение ax^2+bx+c=0,~~ a\ne0

D=b^2-4ac

Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.

Если D=0, то квадратное уравнение имеет два равные корни.

Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.


Как узнать, сколько корней имеет уравнение? к примеру x^7=x+6
4,4(46 оценок)
Ответ:
sergeevan73
sergeevan73
17.04.2020
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
4,6(13 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ